The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.5
/
pp.29-35
/
2022
This paper proposes a fuel cell education framework installed on a Metaverse environment, which is to reduce the burden of education costs and improve the effect of education or learning. This Meta-Fuel cell platform utilizes the Unity 3D Web and enables not only theoretical education but also hands-on training. The platform was designed and developed to accommodate a variety of unit education contents, such as ppt documents, videos, etc. The platform, therdore, integrates ppt and video demonstrations for theoretical education, as well as software content "STACK-Up" for hands-on training. Theoretical education section provides specialized liberal arts knowledge on hydrogen, including renewable energy, hydrogen economy, and fuel cells. The software "STACK-Up" provides a hands-on practice on assembling the stack parts. Stack is the very core component of fuel cells. The Meta-Fuelcell platform improves the limitations of face-to-face education. It provides educators with the opportunities of non-face-to-face education without restrictions such as educational place, time, and occupancy. On the other hand, learners can choose educational themes, order, etc. It provides educators and learners with interesting experiences to be active in the metaverse space. This platform is being applied experimentally to a education project which is to develop advanced manpower in the fuel cell industry. Its improvement is in progress.
Proceedings of the Korea Association of Information Systems Conference
/
2004.05a
/
pp.265-268
/
2004
최근 디지털 지식기반 사회에 대응하는 교육의 형태로 e-Learning이 교육적 대안으로 급부상하면서, 시스템의 상호 운영성 및 컨텐츠 명세, 활용을 지원하기 위한 표준화에 따른 연구가 국내외에서 급속도로 확산되고 있다. 특히, 국제표준기관에서 제시한 e-Learning 개발 환경을 위한 Learning Technology Standard Architecture(LTSA)와 Sharable Content Object Reference Model(SCORM)을 제 정하여 컨텐츠의 사용과 상호 호환을 가능하게 함으로써 e-Learning의 효율성을 증대시키고 산업 시장의 확장을 이룰 수 있다. 또한, 현재 많은 교육관련 업체에서는 SCORM 체계를 기반으로 한 학습 컨텐츠들을 개발하여 제공하고 있다. 따라서, 본 논문에서는 국제 표준 기술인 SCORM을 기반으로 개발된 학습 컨텐츠를 체계적으로 지원하기 위해 컨텐츠 관리 시스템 개발에 대한 기술을 정의하고, 다양한 관점의 컨텐츠 메타 데이터를 식별, 분류함으로써 컨텐츠의 생성과 저장, 검색 나아가 형상관리를 위한 기본 정보로 이용 가능하다. 또한 이들 메타 데이터를 기반으로 한 학습 컨텐츠 관리 시스템의 프로토타이핑을 제시함으로써 재사용성과 유지보수성 향상을 통해 컨텐츠 개발의 용이성과 품질 및 생산성을 높일 수 있다.
최근 디지털 지식기반 사회에 대응하는 교육의 형태로 e-Learning이 교육적 대안으로 급부상하면서, 시스템의 상호 운영성 및 컨텐츠 명세, 활용을 지원하기 위한 표준화에 따른 연구가 국내외에서 급속도로 확산되고 있다. 특히, 국제표준기관에서 제시한 e-Learning 개발 환경을 위한 Learning Technology Standard Architecture(LTSA)와 Sharable Content Object Reference Model(SCORM)을 제정하여 컨텐츠의 사용과 상호 호환을 가능하게 함으로써 e-Learning의 효율성을 증대시키고 산업 시장의 확장을 이룰 수 있다. 또한, 현재 많은 교육관련 업체에서는 SCORM 체계를 기반으로 한 학습 컨텐츠들을 개발하여 제공하고 있다. 따라서, 본 논문에서는 국제 표준 기술인 SCORM을 기반으로 개발된 학습 컨텐츠를 체계적으로 지원하기 위해 컨텐츠 관리 시스템 개발에 대한 기술을 정의하고, 다양한 관점의 컨텐츠 메타 데이터를 식별, 분류함으로써 컨텐츠의 생성과 저장, 검색 나아가 형상관리를 위한 기본 정보로 이용 가능하다. 또한 이들 메타 데이터를 기반으로 한 학습 컨텐츠 관리 시스템의 프로토타이핑을 제시함으로써 재사용성과 유지보수성 향상을 통해 컨텐츠 개발의 용이성과 품질 및 생산성을 높일 수 있다.
Journal of the Korean Society of Systems Engineering
/
v.19
no.2
/
pp.18-31
/
2023
Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.
In this study, the meta-analysis technique was applied to investigate the effectiveness of gifted-mathematics programs on development of creativity. Studies conducted the outcomes form the 20 studies were used for meta-analysis. Research questions are as follows; first, what is the overall effect size of the gifted mathematics programs on development of mathematical creativity. Second, what are effect sizes of sub-group(fluency, flexibility, originality) analysis. Third, compare the effect sizes of those in compliance with the grade and the class type. Results from data analysis are as follows. First, the overall effect size for studies related the gifted-mathematical programs was .66, which is high. Second, it was found that each sub-group differed from its effect on learning outcomes. Fluency(.76) was the highest of all, which was followed by flexibility(.60) and originality(.50) in a row. Lastly, the overall effect size for gifted elementary school students related the gifted-mathematical programs was .69, which is high than gifted middle school students was .46.
The semantic web environment promise semantic search of heterogeneous data from distributed web page. Semantic search would resuit in an overwhelming number of results for users is increased, therefore elevating the need for appropriate personalized ranking schemes. Culture Finder helps semantic web agents obtain personalized culture information. It extracts meta data for each web page(culture news, culture performance, culture exhibition), perform semantic search and compute result ranking point to base user profile. In order to work efficient, Culture Finder uses five major technique: Machine learning technique for generating user profile from user search behavior and meta data repository, an efficient semantic search system for semantic web agent, query analysis for representing query and query result, personalized ranking method to provide suitable search result to user, upper ontology for generating meta data. In this paper, we also present the structure used in the Culture Finder to support personalized search service.
The purpose of this study was to identify learning strategies by learning style of first-year engineering students in order to find implications for teaching and learning strategies in engineering education. This study was conducted with 273 first-year students in two universities in Korea. Following were the results: First, there were Sensing learners(72.2%), Visual learners(84.6%), Reflective learners(64.8%), and Sequential learners(58.2%) and the level of learning strategies was 3.28(SD=0.38). Secondly, the finding revealed that there was only significant difference in learning strategies on Information processing dimension and Active students demonstrated higher level of learning strategies than Reflective students. To be more specific, there were significant differences in cognitive, meta-cognitive, and internal and external management. For engineering education, implications for teaching strategies in classroom and self-regulated learning strategies were discussed.
Medical AI, which has lately made significant advances, is playing a vital role, such as assisting clinicians with diagnosis and decision-making. The field of chest X-rays, in particular, is attracting a lot of attention since it is important for accessibility and identification of chest diseases, as well as the current COVID-19 pandemic. However, despite the vast amount of data, there remains a limit to developing an effective AI model due to a lack of labeled data. A research that used federated learning on chest X-ray data to lessen this difficulty has emerged, although it still has the following limitations. 1) It does not consider the problems that may occur in the Non-IID environment. 2) Even in the federated learning environment, there is still a shortage of labeled data of clients. We propose a method to solve the above problems by using the self-supervised learning model as a global model of federated learning. To that aim, we investigate a self-supervised learning methods suited for federated learning using chest X-ray data and demonstrate the benefits of adopting the self-supervised learning model for federated learning.
As an effort to understand alienated gifted students, we investigated learning characteristics and learning tactics of a scientifically gifted student with economic difficulty and physical disadvantage. The student we studied is attending the Saturday Physics Class which is an after school science activity offered by our university. We adopted techniques of qualitative case study. Participant observation was carried out at the field and the interview was done with the participant, his mother, and his teacher of 5th grade. Field documents and self-reports were used to understand the student synthetically. As a result, learning characteristics of the participant could be summarized as a spontaneous learning which originated from the internal motivation and struggle for learning to overcome the sense of inferiority and isolation from the peers. The participant adopted a strategic method for learning to satisfy his learning desire given the circumstance of socioeconomic and physical disadvantage: the three tactics we found were various learning routes, meta-cognitive ability and fervent response.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.10
/
pp.218-228
/
2019
This study was conducted to review and analyze the academic-related satisfaction intervention programs for Korean nursing students and to provide evidence-based data. The data included in the meta-analysis were 25 studies published from 2001 to July 2018, and the design of the study consisted of 1 randomized controlled trial and 24 non-randomized controlled trials. The study subjects were nursing students from 1st to 4th grade, and the intervention program was conducted in theoretical and practical classes. The sample size was 1182 (mean: 47.3) in the experimental group and 1137 in the control group (mean: 45.5). The intervention program consisted of 1~16 weeks/1~16 sessions/7~240 minutes per session. Dependent variables were as follows: major satisfaction, learning satisfaction, satisfaction with the classroom practice, and satisfaction with the clinical practice. Satisfaction with the classroom practice (Hedges' g=0.876[95% CI: 0.405, 1.346]), satisfaction with the clinical practice (Hedges' g=0.515[95% CI: 0.312, 0.718]), and overall academic-related satisfaction (Hedges' g=0.630[95% CI: 0.371, 0.889]) were statistically significant and above intermediate levels in the meta-analysis. The study results are significant in that the objective results were confirmed by integrating the previous studies dealing with the academic-related satisfaction intervention program of nursing students.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.