In this study, we develop 15 learning programs to enhance the variable identification and control abilities for the middle school students and analyze the effect of the programs applied to the class. To increase the learning effect of the variable identification and control abilities, we design the programs so that the students can monitor their thinking processes and also they can evaluate the results from their cognitive activities objectively. We analyze the effect of the programs applied to the class and the results show that the test group, which uses the program, marks higher scores in the variable identification abilities compared to the control group. Also, the test group has the increased level of logic to control the variables. Especially, the effect is higher with the students who do not have any logic to control the variables. From the results, we know that it is possible to improve the variable identification and control abilities of the students through the meta-cognitive learning programs developed by us. Furthermore, the results show that the score of variable control abilities positively correlate with that of meta-cognitive level. It means that the meta-cognitive strategy meaningfully increases the variable control abilities of middle school students.
Given the local traders with pattern-based multi-predictors of stock prices, we study a method of dynamic asset allocation to maximize the trading performance. To optimize the proportion of asset allocated to each recommendation of the predictors, we design an asset allocation strategy called meta policy in the reinforcement teaming framework. We utilize both the information of each predictor's recommendations and the ratio of the stock fund over the total asset to efficiently describe the state space. The experimental results on Korean stock market show that the trading system with the proposed meta policy outperforms other systems with fixed asset allocation methods. This means that reinforcement learning can bring synergy effects to the decision making problem through exploiting supervised-learned predictors.
Journal of The Korean Association For Science Education
/
v.32
no.8
/
pp.1295-1317
/
2012
There has been disagreement on the importance of definitions in science education. Yager (1983) believes that one crisis in science education was due to the considerable emphasis upon the learning of definitions. Hobson (2004) disagrees with physics textbooks that do not provide general definition on energy. Some textbooks explain that "there is no completely satisfactory definition of energy" or they can only "struggle to define it." In general, imprecise definitions in textbooks (Bauman, 1992) and inaccuracies in definition provided by teachers (Galili & Lehavi, 2006) may cause alternative conceptions. Besides, there are at least four challenges in defining physical concepts: precision, circularity, context and completeness in knowledge. These definitional problems that have been discussed in The Feynman Lectures, may impede the learning of physical concepts. A meta-study approach is employed to examine about five hundreds journal papers that may discuss definitions in physics, problems in defining physical concepts and how they may result in alternative conceptions. These journal papers are mainly selected from journals such as American Journal of Physics, International Journal of Science Education, Journal of Research in Science Teaching, Physics Education, The Physics Teachers, and so on. There are also comparisons of definitions with definitions from textbooks, Dictionaries of Physics, and English Dictionaries. To understand the nature of alternative conception, Lee et al. (2010) have suggested a theoretical framework to describe the learning issues by synthesizing cognitive psychology and science education approaches. Taking it a step further, this study incorporates the challenges in semantics and epistemology, proposes that there are at least four variants of alternative conceptions. We may coin the term, 'alternative definitions', to refer to the commonly available definitions, which have these four problems in defining physics concepts. Based on this study, alternative definitions may result in at least four variants of alternative conceptions. Note that these four definitional problems or challenges in definitions cannot be easily resolved. Educators should be cognizant of the four variants of alternative conceptions which can arise from alternative definitions. The concepts of alternative definitions can be useful and possibly generalized to science education and beyond.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.5
/
pp.335-342
/
2016
When dynamics changes occurred in an existing Bayesian Network (BN), the related parameters embedding on the BN have to be updated to new parameters adapting to changed patterns. In this case, these parameters have to be updated with the consideration of the causalities in the BN. This research suggests a framework for updating parameters dynamically using Expectation Maximization (EM) algorithm and Harmony Search (HS) algorithm among several Meta-Heuristics techniques. While EM is an effective algorithm for estimating hidden parameters, it has a limitation that the generated solution converges a local optimum in usual. In order to overcome the limitation, this paper applies HS for tracking the global optimum values of Maximum Likelihood Estimators (MLE) of parameters. The proposed method suggests a learning and propagation framework of BN with dynamic changes for overcoming disadvantages of EM algorithm and converging a global optimum value of MLE of parameters.
This study was designed as a meta-analysis to investigate the research trends in mathematics learning disabilities(MLD) area. The results of this study were as follows: The 201 researches targeted for the analysis can be categorized 4: characteristic of students with MLD, screening students with MLD, interventional teaching for students with MLD, and et cetera. Also, the outcomes of researches regarding intervention in MLD determined to have a large effect resulted in a total average of 0.958. Especially, as a result of analysing the effect size in accordance with teaching method variables in group-case designed researches, the effect was largest when direct instruction and strategy instruction was given. The effect was largest when the frequency of intervention was over 16 and under 20. The results in this study be summed up as follows. MLD can be served as a foundation in setting a direction for further research to improve in Korea.
The purpose of this study was to comprehensively examine the effect of capstone design education on learning outcomes and propose directions for effective design and implementation of capstone design classes. For achieving this, a 21 studies meeting the standards among the academic journals and thesis published in Korea by September 2020 were selected, and based on 83 effect sizes, the meta analyses were carried out. The results of this study were as follows: First, the total effect size of capstone design education was 0.96, which is a large effect size. Second, the effect size was large in order of affective, cognitive, and social areas. Third, the effect size of vocational basic ability showed a large effect size while creativity showed a medium-sized one. Fourth, the effect size showed highest for design subject, the grade in the third or fourth, there was help from industrial corporation, theory and practice. Based on these results, this study proposed instructional design implications in order to increase the learning effects of capstone design in Korea.
In order to apply AI (Artificial Intelligence) in various industries, interest in algorithm selection is increasing. Algorithm selection is largely determined by the experience of a data scientist. However, in the case of an inexperienced data scientist, an algorithm is selected through meta-learning based on dataset characteristics. However, since the selection process is a black box, it was not possible to know on what basis the existing algorithm recommendation was derived. Accordingly, this study uses k-means cluster analysis to classify types according to data set characteristics, and to explore suitable classification algorithms and methods for resolving class imbalance. As a result of this study, four types were derived, and an appropriate class imbalance resolution method and classification algorithm were recommended according to the data set type.
Journal of the Korean Society of Systems Engineering
/
v.18
no.2
/
pp.75-93
/
2022
Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.
Akhilanand Chaurasia;Arunkumar Namachivayam;Revan Birke Koca-Unsal;Jae-Hong Lee
Journal of Periodontal and Implant Science
/
v.54
no.1
/
pp.3-12
/
2024
Deep learning (DL) offers promising performance in computer vision tasks and is highly suitable for dental image recognition and analysis. We evaluated the accuracy of DL algorithms in identifying and classifying dental implant systems (DISs) using dental imaging. In this systematic review and meta-analysis, we explored the MEDLINE/PubMed, Scopus, Embase, and Google Scholar databases and identified studies published between January 2011 and March 2022. Studies conducted on DL approaches for DIS identification or classification were included, and the accuracy of the DL models was evaluated using panoramic and periapical radiographic images. The quality of the selected studies was assessed using QUADAS-2. This review was registered with PROSPERO (CRDCRD42022309624). From 1,293 identified records, 9 studies were included in this systematic review and meta-analysis. The DL-based implant classification accuracy was no less than 70.75% (95% confidence interval [CI], 65.6%-75.9%) and no higher than 98.19 (95% CI, 97.8%-98.5%). The weighted accuracy was calculated, and the pooled sample size was 46,645, with an overall accuracy of 92.16% (95% CI, 90.8%-93.5%). The risk of bias and applicability concerns were judged as high for most studies, mainly regarding data selection and reference standards. DL models showed high accuracy in identifying and classifying DISs using panoramic and periapical radiographic images. Therefore, DL models are promising prospects for use as decision aids and decision-making tools; however, there are limitations with respect to their application in actual clinical practice.
Journal of The Korean Association of Information Education
/
v.12
no.4
/
pp.375-384
/
2008
Computer programming has educational effect on improving high-level thinking abilities. However, students initially have to spend too much effort in learning the basic grammar and the usage model of programming languages, which negatively affects their eagerness in learning. To remedy this problem, we propose to apply the Scratch to a Game Developing Programming Class; Scratch is an easy-to-learn and intuitive Educational Programming Language (EPL) that helps improving the Meta-cognition and Self-efficacy of middle school students. Also we used the Demonstration-Practice instruction model with self-questioning method for activating the Meta-cognition. In summary, a game developing programming class using Scratch was shown to significantly improve the Meta-cognition of middle school students. However it was shown to insignificantly improve the Self-efficacy of girl students group.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.