• Title/Summary/Keyword: Meta Classifier

Search Result 14, Processing Time 0.02 seconds

A Performance Comparison of Multi-Label Classification Methods for Protein Subcellular Localization Prediction (단백질의 세포내 위치 예측을 위한 다중레이블 분류 방법의 성능 비교)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.992-999
    • /
    • 2014
  • This paper presents an extensive experimental comparison of a variety of multi-label learning methods for the accurate prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular locations. We compared several methods from three categories of multi-label classification algorithms: algorithm adaptation, problem transformation, and meta learning. Experimental results are analyzed using 12 multi-label evaluation measures to assess the behavior of the methods from a variety of view-points. We also use a new summarization measure to find the best performing method. Experimental results show that the best performing methods are power-set method pruning a infrequently occurring subsets of labels and classifier chains modeling relevant labels with an additional feature. futhermore, ensembles of many classifiers of these methods enhance the performance further. The recommendation from this study is that the correlation of subcellular locations is an effective clue for classification, this is because the subcellular locations of proteins performing certain biological function are not independent but correlated.

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

Multimodal Sentiment Analysis Using Review Data and Product Information (리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석)

  • Hwang, Hohyun;Lee, Kyeongchan;Yu, Jinyi;Lee, Younghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.15-28
    • /
    • 2022
  • Due to recent expansion of online market such as clothing, utilizing customer review has become a major marketing measure. User review has been used as a tool of analyzing sentiment of customers. Sentiment analysis can be largely classified with machine learning-based and lexicon-based method. Machine learning-based method is a learning classification model referring review and labels. As research of sentiment analysis has been developed, multi-modal models learned by images and video data in reviews has been studied. Characteristics of words in reviews are differentiated depending on products' and customers' categories. In this paper, sentiment is analyzed via considering review data and metadata of products and users. Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Self Attention-based Multi-head Attention models and Bidirectional Encoder Representation from Transformer (BERT) are used in this study. Same Multi-Layer Perceptron (MLP) model is used upon every products information. This paper suggests a multi-modal sentiment analysis model that simultaneously considers user reviews and product meta-information.