• Title/Summary/Keyword: Mesozooplankton community

Search Result 25, Processing Time 0.025 seconds

Distributional characteristics of mesozooplankton community in Nakdong river estuary (낙동강 하구역의 동물플랑크톤 군집 분포특성)

  • Kang, Jung-Hoon;Kim, Minju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.1-11
    • /
    • 2020
  • This study investigated the mesozooplankton community and the related environmental factors in the Nakdong River Estuary in May and early October shortly after passage of the typhoon "DUJUAN" in 2015. The mesozooplankton community was dominated by barnacle nauplii, foraminiferans, and Noctiluca scintillans, and the environmental characteristics were characterized by freshwater inflow through the Nakdong River barrage, the intrusion of warm currents, and the effect of typhoon passage in October. In May, cladocerans, such as Evadne nordmanni and Podon polyphemoides, as indicator species of brackish water, prevailed throughout the study area. The surface salinity was lowest on the inner side of the barrier-islands and increased gradually to the outer side during the study. The average concentration of total suspended solids in October was higher than that in May, while the averaged concentration of nitrate and chlorophyll-a in May was higher than those in October. On the other hand, there was no temporal difference in the total averaged abundance of mesozooplankton. In contrast, the distributional pattern of the mesozooplankton community was associated with the salinity gradient in both seasons. These results suggest that the temporal difference of the mesozooplankton community depended on the extent of freshwater inflow by barrage opening, the intrusion intensity of warm currents, and typhoon passage in the Nakdong River estuary in 2015.

Mesozooplankton Community Dynamics in Watan Stream, Yeonggwang, Korea (영광 와탄천의 중형동물플랑크톤 군집동태)

  • Lee, Dong-Ju;Kim, Say-Wa;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2009
  • Mesozooplankton dynamics were studied in Watan stream which flows into the Yellow Sea in Yeonggwang, Korea. Samples were collected at eight stations bimonthly during April 2006~February 2007. Mesozooplankton community was consisted of 45 taxa (8 cladocerans and 29 cope-pods). The abundance varied between the highest one ($31{\sim}127,587\;indiv.m^{-3}$) in October, and the lowest ($12{\sim}233\;indiv.m^-3$) in December. Diversity index showed to be the highest value in July (0.671) and the lowest one in August (0.368). A euryhaline species, Acartia hongi was dominant in brackish water stations (the highest abundance at $13.4^{\circ}C$ and 14.1 psu). In freshwater stations of the upstream, two cladoceran species of Polyphemus pediculus and Moina weismani occurred in high abundance in August. Dominant taxa of copepod were clustered to two or three groups mainly due to the difference of salinity gradients. Spatial distribution of mesozooplankton revealed to be determined by salinity gradients which were affected by opening and closing of the artificial dam in Watan stream.

Spring Dominant Copepods and Their Distribution Pattern in the Yellow Sea

  • Kang, Jung-Hoon;Kim, Woong-Seo
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.67-79
    • /
    • 2008
  • We investigated the relationship between mesoscale spatial distribution of environmental parameters (temperature, salinity, and sigma-t), chlorophyll-a concentration and mesozooplankton in the Yellow Sea during May 1996, 1997, and 1998, with special reference to Yellow Sea Bottom Cold Water (YSBCW). Adult calanoid copepods, Calanus sinicus, Paracalanus parvus s.l., Acartia omorii, and Centropages abdominalis were isolated by BVSTEP analysis based on the consistent explainable percentage (-32.3%) of the total mesozooplankton distributional pattern. The copepods, which accounted for 60 to 87% of the total abundances, occupied 73-78% of the copepod community. The YSBCW consistently remained in the northern part of the study area and influenced the spatial distribution of the calanoid copepods during the study periods. Abundances of C. sinicus and P. parvus s.l., which were high outside the YSBCW, were positively correlated with the whole water average temperature (p<0.01). In contrast, the abundances of C. abdominalis and A. omorii, which were relatively high in the YSBCW, were associated with the integrated chl-a concentration based on factor analysis. These results indicate that the YSBCW influenced the mesoscale spatial heterogeneity of average temperature and integrated chl-a concentration through the water column. This consequently affected the spatial distribution pattern of the dominant copepods in association with their respective preferences for environmental and biological parameters in the Yellow Sea during spring.

Mesozooplankton Community Focusing on the Copepods in the Bulgap Stream, Yeonggwang, Korea (영광 불갑천에 서식하는 요각류를 중심으로 한 중형동물플랑크톤의 군집구조)

  • Lee, Dong-Ju;Lim, Dong-Il;Kwak, Inn-Sil;Soh, Ho-Young;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.355-366
    • /
    • 2008
  • The composition and abundance of mesozooplankton were studied from the five stations on the Bulgap stream near Yeonggwang, Jeollanamdo, Korea. Mesozooplankton samples were collected bimonthly in April, July, August, October, and December 2006 and February 2007. Total 44 taxa of mesozooplankton occurred with the highest abundance (31$\sim$53,230 indiv. m$^{-3}$) in October, and the fewest (16$\sim$97 indiv. m$^{-3}$) in December. Diversity index is the highest in July (1.072) and the lowest in October (0.386). The two copepod species, Pseudodiaptomus inopinus and Macrocyclops albidus were dominant during the study periods. A brackishwater species, P. inopinus occurred in the Bulgap stream during from August 2006 to February 2007. This species was the most dominant species (53,010 indiv. m$^{-3}$) in the stations that usually have low salinities (0.1$\sim$14.0 psu). M. albidus was predominated during from April to August 2006 in the freshwater stations.

Mesozooplankton Community in the Chuuk Lagoon of the Federated States of Micronesia (마이크로네시아 축 주의 석호환경 내 동물플랑크톤 군집: 종조성 및 개체수)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Cho, Kyu-Hee
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.463-476
    • /
    • 2005
  • Mesozooplankton samples were collected to investigate the spatial distribution in the Chuuk lagoon of the Federated States of Micronesia through three surveys from 2002 to 2004. Average temperature was $28.70^{\circ}C$ in August 2002, $30.17^{\circ}C$ in October 2003 and $29.18^{\circ}C$ in July 2004 at a water depth of 2rn. Average salinity was 33.95 psu in August 2002, 33.56 psu in October 2003 and 33.77 psu in July 2004. Total rnosozooplankton consisted of 70 taxa during the study period, among which copepods were the most diverse group. Foraminiferans, radiolarians, copepods and appendicularians, which comprised about 70% of total zooplankton abundance, were important components in the zooplankton community. Within the copepod group, Acartia spp., Centropages spp. and Undinula spp. were dominant in August 2002, Acartia spp., Centropages spp., and Oithona spp. in October 2003, and Acartia spp., Undinula spp., and Oithona spp. in July 2004. Total zooplankton abundance was high around Weno Island, while low in stations located in the northern part of Weno Island. High abundances of appendicularians were found in the southern part of weno Island as well as around Weno Island. Appendicularians foraminiferans, radiolarians, Sagitta spp. and immature copepods accounted for most of the distribution pattern of the mesozzoplankton community throughout the study area. These results suggest that appendicularians may be potential food items for fish larvae around Weno Island in the Chuuk lagoon states.

Ecological and Biogeochemical Response of Antarctic Ecosystems to Iron Fertilization and Implications on Global Carbon Cycle

  • Bathmann, Ulrich
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.231-235
    • /
    • 2005
  • The European Iron Fertilization Experiment EIFEX studied the growth and decline of a phytoplankton bloom stimulated by fertilising $10km^2$ in the core of a mesoscale $(80{\times}120km)$ cyclonic eddy south of the Antarctic Polar Front with about 2 times 7 tonnes of iron sulphate. The phytoplankton accumulation induced by iron fertilization did not exceed $3{\mu}g\;chl\;a\;l^{-1}$ despite a draw down of $5{\mu}M$ of nitrate that should have resulted in at least double to triple the amount of phytoplankton biomass assuming regular Redfield-ratios for draw down after phytoplankton growth in the Southern Ocean. During EIFEX the fertilized core of the mesoscale eddy evolved to a hotspot for a variety of small and medium sized mesozooplankton copepods. In contrast to copepods, the biomass of salps (Salpa thompson)) that dominated zooplankton biomass before the onset of our experiment decreased to nearly extinction. Most of the species of the rnosozooplankton community showed extremely hiか feeding rates compared to literature values from Southern Ocean summer communities. At the end of the experiment, massive phytoplankton sedimentation reached the sea floor at about 3800m water depth.

Latitudinal Differences in the Distribution of Mesozooplankton in the Northeastern Equatorial Pacific

  • Kang, Jung-Hoon;Kim, Woong-Seo;Son, Seung-Kyu
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.351-360
    • /
    • 2004
  • To investigate latitudinal variations in the zooplankton community along the meridian line ($5^{\circ}N-12^{\circ}N$, $131.5^{\circ}W$), we measured temperature, salinity, nitrate, chlorophyll-a and zooplankton at depths above 200 m from July $10^{th}$ to $25^{th}$, 2003. For comparative analysis, data of the physico-chemical properties and chl-a were matched to the two sampling depths (surface mixed layer and thermocline depth-200 m) of zooplankton. Latitudinal differences in the mesozooplankton distribution were mainly influenced by divergence formed at a boundary line formed by currents of opposing directions, consisting of North Equatorial Current (NEC) and North Equatorial Counter Current (NECC). High concentrations of chl-a south of $9^{\circ}N$, caused by equatorial upwelling related nutrients, is thought to be affected by the role of this divergence barrier, supported by relatively low concentrations in waters north of $9^{\circ}N$. The latitudinal differences of the chl-a were significantly associated with the major groups of zooplankton, namely calanoid and cyclopoid copepods, appendicularians, ostracods, chaetognaths, invertebrate larvae, and others. And temperature significantly affected the latitudinal variation of radiolarians, siphonophores, salps and immature copepods. The latitudinal differences in the two factors, temperature and chl-a, which explained 71.0% of the total zooplankton variation, were characterized by the equatorial upwelling as well as the divergence at $9^{\circ}N$. The physical characteristics also affected the community structure and abundance of zooplankton as well as average ratios of cyclopoid versus calanoid copepods. The abundance of dominant copepods, which were consistent with chl-a, were often associated with the carnivorous zooplankton chaetognaths, implying the relative importance of bottom-up regulation from physical properties to predatory zooplankton during the study period. These results suggested that latitudinal distribution of zooplankton is primarily controlled by current-related divergences, while biological processes are of secondary importance in the northeastern Equatorial Pacific during the study period in question.

On the Distribution of Zooplankton in the Southeastern Barents Sea during July 2002

  • Lee, Kang-Hyun;Chung, Kyung-Ho;Soh, Ho-Young;Lee, Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.392-399
    • /
    • 2003
  • The spatial distribution and composition of the mesozooplankton community in the southeastern Barents Sea were observed at 17 stations, from 12 to 28 July 2002. Six taxa of zooplankton were found, including tintinnids, copepods, cumaceans, appendicularians, polychaetes, and barnacle larvae. Copepods were dominant, comprising 74% of the community. The copepod species Limnocalanus grimaldii, Pseudocalanus acuspes, Calanus glacialis, Calanus finmarchicus, and Microsetella norvegica, and the cumacean species Diastylis rathkei and Campylaspis rubicunda were identified. The overall mean abundance of the zooplankton was 72 indiv.l0 $\mu \textrm m^{-3}$ in the study area, ranging from 4 to 197 indiv.l0$\mu \textrm m^{-3}$. Zooplankton was more abundant at the oceanic than the coastal stations. The highest biomass measured was 97.4mg $\mu \textrm m^{-3}$, the mean biomass was 36.9 mg 10$\mu \textrm m^{-3}$, 93% of which was copepods. Pseudocalanus acuspes, C. glacialis, and C. finmarchicus predominated, accounting for 61% of abundance and 86% of biomass. Spatial distributions of the zooplankton community in the study area depended on the variations in water temperature and salinity, which were influenced by freshwater runoff from the continent.

The Effect of Enhanced Zooplankton on the Temporal Variation of Plankton in a Mesocosm (인위적인 동물플랑크톤 첨가에 따른 중형 폐쇄생태계 내 플랑크톤 변동)

  • Kang Jung-Hoon;Kim Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 2006
  • This study investigated the effect of artificially enhanced mesozooplankton on the phytoplankton dynamics during fall blooming period using a mesocosm in Jangmok bay located in the Southern Sea of Korea in 2001. The four bags with 2,500 liter seawater containment were directly filled with the ambient water. And then, abundances of mesozooplankton in two experimental bags were treated 6 times higher than those in control bags by towing with net($300{\mu}m$) through the ambient water. Phytoplankton community between control and experimental bags were not significantly different in terms of chlorophyll-a(chl-a) concentration and standing crop (one-way ANOVA, p>0.05) during the study period. Initial high standing crop and chl-a concentration of phytoplankton drastically decreased and remained low until the end of the experiment in all bags. Diatoms, accounting for most of the phytoplankton community, consisted of Skeletonema costatum, Pseudo-nitzschia seriata, Chaetoceros curvisetus, Ch. debilis, Cerataulina pelagica, Thalassiosira pacifica, Cylindrotheca closterium, and Leptocylindrus danicus. Noctiluca scintillans dominated the temporal variation of mesozooplankton abundances, which peaked on Day 10 in the control and experimental bags, while the next dominant copepods showed their peak on Day 7. Shortly after mesozooplankton addition, copepod abundance in the experimental bags was obviously higher than that in the control bags on Day 1, however, it became similar to that in the control bags during the remnant period. It was supported by the higher abundance and length of both ctenophores and hydromedusae in experimental bags relative to the control bags. However, the cascading trophic effect, commonly leading to re-increase of phytoplankton abundance, was not found in the experimental bags, indicating that copepods were not able to control the phytoplankton in the bags based on the low grazing rate of Acartia erythraea. Besides that, rapidly sunken diatoms in the absence of natural turbulence as well as N-limited condition likely contributed the no occurrence of re-increased phytoplankton in the experimental bags.

  • PDF

The Effect of Enhanced Nitrate Input on the Temporal Variation of the Plankton Community in a Mesocosm (질산염 첨가에 따른 중형폐쇄생태계 내 플랑크톤 군집의 변화)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Shin, Kyoung-Soon;Chang, Man;Hwang, Keun-Choon
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.341-349
    • /
    • 2005
  • Temporal variation of the natural planktonic community in the Southern Sea of Korea was investigated by using low floating enclosed bags (3.2m deep and 2,500 liter) in order to understand the effect of enriched nitrate on the planktonic community in the spring (March-April) of 2002. Prior to beginning the incubation, the bags were placed in two different concentrations of nitrate, which consisted of control (ambient water) and experimental mesocosms (final concentration of $12{\mu}M$). The nitrate concentration in the experimental mesocosms remained significantly higher than those in control mesocosms throughout the study period (ANOYA, p<0.001). Following the addition of nitrate, abundance and chi-a concentration of phytoplankton peaked on Day 1, when diatoms established the peak in the experimental mesocosms. Diatoms consisted mainly of Thalasxiosira decipiens, Pseudo-nitzschia pungem, Leptocylindrus danicu, Thalassionema nitzschioides, Chaetoceros pseudocrinitus and Actinoptychus senariu. However, the peak did not lead to the difference in abundance and composition of phytoplankton between control and experimental mesocosms during the study period. The dinoflagellates began to increase soon after the diatoms decreased in all mesocosms. Copepods, as a dominant group in the rnosozooplankton community, showed no immediate peak in relation to the nitrate addition, but only their own developmental process from the eggs to adult stage during the study period. The bottom-up control from enriched nitrate via phytoplankton to adult copepods was not distinguished in terms of the abundance of the planktonic community. This might stem from the relatively low nitrate availability of phytoplankton at no N-limited seawater and the weak coupling between rapidly sunken diatoms and copepods through the water column.