• Title/Summary/Keyword: Mesoscale numerical model

Search Result 94, Processing Time 0.023 seconds

The Effect of Atmospheric Flow Field According to the Urban Roughness Parameter and the Future Development Plan on Urban Area (도심 실제 거칠기 적용과 장래 도심 개발계획에 따른 국지 기상장 변화 수치 모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2010
  • In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.

Mechanism Study of Tropical Cyclone Impact on East Asian Subtropical Upper-Level Jet: a Numerical Case Investigation

  • Chen, Xian;Zhong, Zhong;Lu, Wei
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.575-585
    • /
    • 2018
  • In the case study of this paper, sensitivity experiments are carried out using the mesoscale non-hydrostatic Weather Research and Forecasting (WRF) model to investigate the impact of tropical cyclone (TC) Soudelor (2003) on the East Asian subtropical upper-level jet (EASJ) before TC Soudelor transformed into an extratropical cyclone. The physical mechanism for changes in the EASJ intensity and position caused by TC Soudelor is explored. Results indicate that TC Soudelor would warm the air in the middle and upper troposphere over the Japan Sea and the adjacent areas through stimulating northward propagating teleconnection pattern as well as releasing large amounts of latent heat, which led to increase (decrease) the meridional air temperature gradient to the south (north) below the EASJ axis. As a result, the geopotential height abnormally increased in the upper troposphere, resulting in an anomalous anticyclonic circulation belt along the EASJ axis. Correspondingly, the westerly winds to the north (south) of the EASJ axis intensified (weakened) and the EASJ axis shifted northward by one degree. The case study also suggests that before the extratropical cyclone transition of TC Soudelor, the TC activities had exerted significant impacts on the EASJ through thermodynamic processes.

Numerical Simulation of Local Atmospheric Circulations in the Valley of Gwangneung KoFlux Sites (광릉 KoFlux 관측지 계곡에서의 국지순환 수치모의)

  • Lee, Seung-Jae;Kim, Joon;Kang, Minseok;Malla-Thakuri, Bindu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.246-260
    • /
    • 2014
  • A 90-m horizontal-resolution numerical model was configured to study the micrometeorological features of local winds in the valley of Gwangneung KoFlux (Korea Flux network) Sites (GDK: Gwangneung Deciduous forest site in Korea, GCK: Gwangneung Coniferous forest site in Korea) during summer days. The U. S. Geological Survey (USGS) Shuttle Radar Topography Mission (SRTM) data were employed for high-resolution model terrain height. Model performance was evaluated by comparing observed and simulated near-surface temperature and winds. Detailed qualitative analysis of the model-simulated wind field was carried out for two selected cases which are a clear day (Case I) and a cloudy day (Case II). Observed winds exhibited that GDK and GCK, as well as Case I and Case II, had differences in timing, duration and strength of daytime and nighttime wind direction and speeds. The model simulation results strongly supported the existence of the drainage flow in the valley of the KoFlux tower sites. Overall, the simulated model fields realistically presented the diurnal cycle of local winds in and around the valley, including the morning drainage-upslope transition and the evening reversal of upslope wind. Also, they indicated the complexity of local winds interactions by presenting that daytime westerly winds in the valley were not always pure mountain winds and were often coupled with larger-scale wind systems, such as synoptic-scale winds or mesoscale sea breezes blowing from the west coast of the peninsula.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Nonhydrostatic Effects on Convectively Forced Mesoscale Flows (대류가 유도하는 중규모 흐름에 미치는 비정역학 효과)

  • Woo, Sora;Baik, Jong-Jin;Lee, Hyunho;Han, Ji-Young;Seo, Jaemyeong Mango
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.293-305
    • /
    • 2013
  • Nonhydrostatic effects on convectively forced mesoscale flows in two dimensions are numerically investigated using a nondimensional model. An elevated heating that represents convective heating due to deep cumulus convection is specified in a uniform basic flow with constant stability, and numerical experiments are performed with different values of the nonlinearity factor and nonhydrostaticity factor. The simulation result in a linear system is first compared to the analytic solution. The simulated vertical velocity field is very similar to the analytic one, confirming the high accuracy of nondimensional model's solutions. When the nonhydrostaticity factor is small, alternating regions of upward and downward motion above the heating top appear. On the other hand, when the nonhydrostaticity factor is relatively large, alternating updraft and downdraft cells appear downwind of the main updraft region. These features according to the nonhydrostaticity factor appear in both linear and nonlinear flow systems. The location of the maximum vertical velocity in the main updraft region differs depending on the degrees of nonlinearity and nonhydrostaticity. Using the Taylor-Goldstein equation in a linear, steady-state, invscid system, it is analyzed that evanescent waves exist for a given nonhydrostaticity factor. The critical wavelength of an evanescent wave is given by ${\lambda}_c=2{\pi}{\beta}$, where ${\beta}$ is the nonhydrostaticity factor. Waves whose wavelengths are smaller than the critical wavelength become evanescent. The alternating updraft and downdraft cells are formed by the superposition of evanescent waves and horizontally propagating parts of propagating waves. Simulation results show that the horizontal length of the updraft and downdraft cells is the half of the critical wavelength (${\pi}{\beta}$) in a linear flow system and larger than ${\pi}{\beta}$ in a weakly nonlinear flow system.

Numerical Implication of Concrete Material Damage at the Finite Element Levels (콘크리트 재료손상에 대한 유한요소상의 의미)

  • Rhee, In-Kyu;Roh, Young-Sook;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.37-46
    • /
    • 2006
  • The principal objective of this study is to assess the hierarchical effects of defects on the elastic stiffness properties at different levels of observation. In particular, quantitative damage measures which characterize the fundamental mode of degradation in the form of elastic damage provide quite insightful meanings at the level of constitutive relations and at the level of structures. For illustration, a total of three model problems of increasing complexity, a 1-D bar structure, a 2-D stress concentration problem, and a heterogeneous composite material made of a matrix with particle inclusions. Considering a damage scenario for the particle inclusions the material system degrades from a composite with very stiff inclusions to a porous material with an intact matrix skeleton. In other damage scenario for the matrix, the material system degrades from a composite made of a very stiff skeleton to a disconnected assembly of particles because of progressive matrix erosion. The trace-back and forth of tight bounds in terms of the reduction of the lowest eigenvalues are extensively discussed at different levels of observation.

Application of the Latest Land Use Data for Numerical Simulation of Urban Thermal Environment in the Daegu (최신토지피복자료를 이용한 대구시의 열환경 수치모의)

  • Lee, Hyun-Ju;Lee, Kwi-Ok;Won, Gyeong-Mee;Lee, Hwa-Woon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.196-210
    • /
    • 2009
  • The land surface precesses is very important to predict urban meteorological conditions. Thus, the latest land use data set to reflect the rapid progress in urbanization was applied to simulate urban thermal environment in Daegu. Because use of the U.S geological Survey (USGS) 25-category data, currently in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), does not accurately described the heterogeneity of urban surface, we replaced the land use data in USGS with the latest land-use data of the Korea Ministry of Environment over Daegu. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 5 classes to account for heterogeneity of urban land cover. The new land cover classification (MC-LULC) improved the capability of MM5 to simulate the daytime part of the diurnal temperature cycle in the urban area. The 'MC-LULC' simulation produced the observed temperature field reasonably well, including spatial characteristics. The warm cores in western Daegu is characterized by an industrial area.

Investigation of the Assimilated Surface Wind Characteristics for the Evaluation of Wind Resources (풍력자원 평가를 위한 바람자료 동화 특성 평가)

  • Lee, Hwa-Woon;Kim, Min-Jung;Kim, Dong-Hyeuk;Kim, Hyun-Goo;Lee, Soon-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Wind energy has been recognized as one of the most important and fastest growing energy resources without emission of air pollutant. Thus, it is necessary to predict wind speed and direction accurately both in time and space toward the efficient usage of wind energy. Numerical simulation experiments using the Fifth-Generation Mesoscale Model (MM5) are carried out to clarify the impact of surface observation data assimilation on the estimation of wind energy resources. The EXP_Radius run was designed with respect to the radius of influence in the Four-Dimensional Data Assimilation (FDDA), and the EXP_Impact run was made by changing the nudging coefficient that determines the relative magnitude of the nudging term. The simulation period covers a clear-sky event on 3 - 5 June 2007 and another is on 2 - 4 December 2006. It is found that the simulated results are very sensitive to the radius of influence and nudging parameters in the FDDA. The further analysis of the results shows that the impact of the radius of influence tends to be stronger in weak synoptic flow episode than that in strong synoptic flows episode. The nudging factor is also sensitive to the intensity of the synoptic flows.

Production of Future Wind Resource Map under Climate Change over Korea (기후변화를 고려한 한반도 미래 풍력자원 지도 생산)

  • Kim, Jin Young;Kim, Do Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.3-8
    • /
    • 2017
  • In this study future wind resource maps have been produced under climate change scenario using ensemble regional climate model weather research and forecasting(WRF) for the period from 2045 to 2054(mid 21st century). Then various spatiotemporal analysis has been conducted in terms of monthly and diurnal. As a result, monthly variation(monsoon circulation) was larger than diurnal variation(land-sea circulation) throughout the South Korea. Strong wind area with high wind power energy was varied on months and regions. During whole years, strong wind with high wind resource was pronounced at cold(warm) months in particular Gangwon mountainous and coastal areas(southwestern coastal area) driven by strong northwesterly(southwesterly). Projected strong and weak wind were presented in January and September, respectively. Diurnal variation were large over inland and mountainous area while coastal area were small. This new monthly and diurnal variation would be useful to high resource area analysis and long-term operation of wind power according to wind variability in future.

Application of High Resolution Land Use Data on the Possibility to Mitigate Urban Thermal Environment (고해상도 지표자료를 이용한 도시 열환경 완화효과 가능성에 관한 연구)

  • Lee, Kwi-Ok;Lee, Hyun-Ju;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.423-434
    • /
    • 2009
  • In recent years, the urban thermal environment has become worse, such as days on which the temperature goes above $30^{\circ}C$, sultry nights and heat stroke increase, due to the changes in terrestrial cover such as concrete and asphalt and increased anthropogenic heat emission accompanied by artificial structure. The land use type is an important determinant to near-surface air temperature. Due to these reasons we need to understand and improve the urban thermal environment. In this study, the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model(MMS) was applied to the metropolitan of Daegu area in order to investigate the influence of land cover changes and urban modifications increase of Albedo to the surface energy budget on the simulated near-surface air temperature and wind speed. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 6 classes to account for heterogeneity of urban land cover. As a result of the numerical simulation intended for the metropolitan of Daegu assumed the increase of Albedo of roofs, buildings, or roads, the increase of Albedo (Cool scenario)can make decrease radiation effect of surface, so that it caused drops in ambient air temperature from 0.2 to 0.3 on the average during the daylight hours and smaller (or near-zero) decrease during the night. The Sensible heat flux and Wind velocity is decreased. Modeling studies suggest that increased surface albedo in urban area can reduce surface and air temperatures near the ground and affect related meteorological parameters such as winds, surface air temperature and sensible heat flux.