• Title/Summary/Keyword: Mesoscale Meteorological Model

Search Result 95, Processing Time 0.022 seconds

Numerical Simulation of Tracer Distribution during CAPTEX (CAPTEX 자료에 나타난 추적물 농도 분포의 수치 모사)

  • Kim, Seung-Bum;Lee, Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.357-370
    • /
    • 1994
  • This paper introduces an Eulerian long- range transport model coupled with a mesoscale atmospheric model. The model has been applied to the simulation of tracer distribution during two cases of Cross Appalachian Tracer Experiment (CAPIEX). Meteorological fields are Predicted by CSU RAMS with four-dimensional assimilation and tracer transport is computed from an Eulerian dispersion model. The atmospheric model with a four-dimensional assimilation has produced meteorological fields that agree well with observation and has proved its high potential as a generator of meteorological data for a long-range transport model. The Present transport model Produces reasonable simulations of observed tracer transport although it was partially successful in the case with complicated structure in observed concentration. Model with Bott's 2nd-order scheme performs as well as that with Bott's 4th-order scheme and increased explicit horizontal diffusivity. Diagnosis of the model results indicates that the Present long-range transport model has a good potential as a framework for the acid deposition model with detailed cloud and chemical processes.

  • PDF

Analysis of Precision for Mean Sea Level Pressure simulated by high resolution Weather Model for Typhoon Manyi and Usagi in 2007 (2007년 태풍 Manyi와 Usagi 사례에 대한 고해상도 대기모델 해면기압 정확도 비교 분석)

  • You, Sung-Hyup;Kwon, Ji-Hye
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.127-134
    • /
    • 2010
  • This study investigated the accuracy of mean sea level pressure(MSLP) predicted by weather models around Korean Peninsula during typhoon Manyi and Usagi period in 2007. The mesoscale regional model, RDAPS, KWRF with 30 and 10 km horizontal resolution and developed high-resolution WRF models with 9 and 3 km horizontal resolutions are used to predict the features of MSLP. The predicted MSLP aspects were verified using observed results from total 35 coastal stations including AWS and ocean buoy. Although 4 models showed the reasonable MLSP results during typhoon periods, the highest resolution, 3km WRF model show the most accurate MSLP results with maximum 69% and 60% improvement with comparisons of RDAPS and KWRF, respectively.

A Numerical Study on the Size and Depositions of Yellow Sand Events (황사의 크기 및 침착량에 대한 수치 모의)

  • 정관영;박순웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.191-208
    • /
    • 1998
  • Estimations of dry and wet depositions in Korea and the size distributions of yellow sand above Korea have been carried out using the Eulerian aerosol model with the simulated meteorological data from the SNU mesoscale meteorological model. The estimated particle size distribution in Korea shows a bimodal distribution with peak values at 0.6 pm and 7 pm and a minimum at 2 pm in the lower layer However, as higher up, the bimodal distribution becomes an unimodal distribution with a peak value at 4∼5mm. Among the total amount of yellow sand deflated in the source regions , the dry and wet deposition fluxes were about 92%, and about 1.3∼0.5%, repectively, and the rest(5∼6%) is suspended in the air, Most of dust lifted in the air during the clear weather is deposited in the vicinity of the source regions by dry deposition and the rest undergoes the long -range transport with a gradual removal by the wet deposition processes. Over Korean peninsula, the total amount of yellow sand suspended in the air was about 6∼8% of the emissions in the source region and the dry and wet deposition fluxes were about 0.005∼0.7% and 0.003∼0.051% of the total emitted amount, repectively. It is estimated that 2.7∼8.9 mesa-tons of yellow sand is transported annually over the Korean peninsula with the annual mean dry deposition of 2.1∼490 kilo-tons and the annual mean wet deposition of 1.5∼65 kilo-tons.

  • PDF

Refined numerical simulation in wind resource assessment

  • Cheng, Xue-Ling;Li, Jun;Hu, Fei;Xu, Jingjing;Zhu, Rong
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • A coupled model system for Wind Resource Assessment (WRA) was studied. Using a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, global-scale data were downscaled to the inner nested grid scale (typically a few kilometers), and then through the coupling Computational Fluid Dynamics (CFD) mode, FLUENT. High-resolution results (50 m in the horizontal direction; 10 m in the vertical direction below 150 m) of the wind speed distribution data and ultimately refined wind farm information, were obtained. The refined WRF/FLUENT system was then applied to assess the wind resource over complex terrain in the northern Poyang Lake region. The results showed that the approach is viable for the assessment of wind energy.

A Study on the Applcation of Small Wind Power System using Meteorological Simulation Data in Pusan (기상수치모의 자료를 이용한 부산지역의 소형풍력발전 시스템 적용에 관한 연구)

  • Lee, KwiOk;Lee, KangYeol;Kang, Dongbae;Park, Changhyoun;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1085-1093
    • /
    • 2014
  • We investigate the amount of potential electricity energy generated by wind power in Busan metropolitan area, using the mesoscale meteorological model WRF (Weather Research & Forecasting), combined with small wind power generators. The WRF modeling has successfully simulated meteorological characteristics over the urban areas, and showed statistical significant to predict the amount of wind energy generation. The highest amount of wind power energy has been predicted at the coastal area, followed by at riverbank and upland, depending on predicted spatial distributions of wind speed. The electricity energy prediction method in this study is expected to be used for plans of wind farm constructions or the power supplies.

A Study on the Gust with Thunderstorm in Honam Area (호남지역에서 뇌우에 의한 돌풍사례 분석)

  • Cho, Eun-Hee
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.101-130
    • /
    • 2009
  • In recent years, South Korea has often witnessed damages by gusts caused by thunderstorms in summer. The Korea Meteorological Administration defines that a gust happens when the maximum instantaneous wind velocity is 10m/s or more and draws up hourly observation reports. When a cumulonimbus develops due to an ascending current and reaches the height of 12~16 km, the temperature of the cloud top drops and a lightening happens, which causes a gust accompanied by a thunderstorm and further regional meteorological damage. It's difficult to predict a regional gust with the mesoscale prediction model at the administration. Thus this study set out to analyze the damage cases by a gust accompanied by a thunderstorm and to make a contribution to the prediction and understanding of a gust by a thunderstorm. A gust by a thunderstorm happens where potential equivalent temperature converges or is higher than the surrounding areas. The convergence area of potential equivalent temperature matches the track of thunderstorm cells. The Kimje gust took place where high potential equivalent temperature converged, and the Jangsu gust did as the area of high potential equivalent temperature approached. There should be a good amount of vapor supply with the moisture flux converging at the bottom layer in order to bring instability. In addition, it should collide into a dry and cold atmosphere at 700 hPa. The moving track at the center of the low dew point spread corresponds to that of a gust.

  • PDF

The Effect of Atmospheric Flow Field According to the Urban Roughness Parameter and the Future Development Plan on Urban Area (도심 실제 거칠기 적용과 장래 도심 개발계획에 따른 국지 기상장 변화 수치 모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2010
  • In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.

Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea (한반도 남동해안 해상풍 모의에 적합한 경계층 물리방안 연구)

  • Kim Yoo-Keun;Jeong Ju-Hee;Bae Joo-Hyun;Song Sang-Keun;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1015-1026
    • /
    • 2005
  • The southeastern coastal area of the Korean peninsula has a complex terrain including an irregular coastline and moderately high mountains. This implies that mesoscale circulations such as mountain-valley breeze and land-sea breeze can play an important role in wind field and ocean forcing. In this study, to improve the accuracy of complex coastal rind field(surface wind and sea surface wind), we carried out the sensitivity experiments based on PBL schemes in PSU/NCAR Mesoscale Model (MM5), which is being used in the operational system at Korea Meteorological Administration. Four widely used PBL parameterization schemes in sensitivity experiments were chosen: Medium-Range Forecast (MRF), High-resolution Blackadar, Eta, and Gayno-Seaman scheme. Thereafter, case(2004. 8. 26 - 8. 27) of weak-gradient flows was simulated, and the time series and the vertical profiles of the simulated wind speed and wind direction were compared with those of hourly surface observations (AWS, BUOY) and QuikSCAT data. In the simulated results, the strength of rind speed of all schemes was overestimated in complex coastal regions, while that of about four different schemes was underestimated in islands and over the sea. Sea surface wind using the Eta scheme showed the highest wind speed over the sea and its distribution was similar to the observational data. Horizontal distribution of the simulated wind direction was very similar to that of real observational data in case of all schemes. Simulated and observed vertical distribution of wind field was also similar under boundary layer(about 1 km), however the simulated wind speed was underestimated in upper layer.

A Numerical Simulation for Thermal Environments by the Modification of Land-use in Busan (부산지역 토지이용(land-use) 변화에 의한 열환경 수치모의)

  • 김유근;문윤섭;오인보;임윤규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.453-463
    • /
    • 2002
  • Prognostic meteorological model, MM5V3 (Mesoscale Model 5 Version 3) was used to assess the effects of the land-use modifications on spatial variations of temperature and wind fields in Busan during the selected period of summer season in 2000. We first examined sensitivity analysis for temperature between MM5V3 predictions and meteorological data observed at 4 AWS (Automatic Weather System) stations in Busan, which exhibited low structural and accurate errors (Mean Bias Error, MBE: 0.73, Root Mean Square Error, RMSE: 1.18 on maximum). The second part of this paper, MMSV3 simulations for the modification of land-use was performed with 1 km resolution in target domain, 46$\times$46 $\textrm{km}^2$ area around city of Busan. It was found that modification result from change of surface land-use in central urban area altered spatial distributions of temperature and wind. In particular, heat island core moved slightly to the seaward at 1300 LST. This results may imply that modification of surface land-use leads to change the thermal environments; in addition, it has a significant effect on local wind circulations and dispersions of air pollutants.

A Study on Reduction of Air Conditioning Energy Consumption by Surface Albedo Variation Using Meteorological Model (기상모델을 이용한 지표면 반사능에 따른 냉방에너지 소비 저감 연구)

  • AN, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.16-24
    • /
    • 2010
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the 5.2% reduction of the greenhouse gas emission in 1990. And 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Korean government needs the researches on climate change and the strategic programs for greenhouse gas reduction. In this paper Colorado State University Mesoscale Model(CSU-MM) was applied to simulate the relationship between surface albedo and air temperature. Meteorological model simulation in region of Ansan-City, Shiheung-City showed that mean air temperature became lower with the increase of albedo value. Simulated air temperature became lower $-0.16^{\circ}C$ and $-0.66^{\circ}C$ by 5% and 20% increase of albedo values respectively. And cooling energy saving amount in air conditioning process was calculated according to lowered air temperature. The reduction of air temperature resulted the reduction of air conditioning energy in personal house and commercial buildings. The increase of albedo from 5% to 20% resulted the reduction of air conditioning energy from 44,493 MWh/yr to 183,796 MWh/yr. Additionally the reduction of greenhouse gas emission through the energy saving was calculated after IPCC guideline. In terms of greenhouse gas emission $CO_2$ was reduced form -30,414 ton-$CO_2$/yr to -125,638 ton-$CO_2$/yr according to the reduction of electric energy.