• 제목/요약/키워드: Mesoscale Meteorological Model

검색결과 95건 처리시간 0.051초

중규모 수치모델 WRF를 이용한 강원 지방 하층 풍속 예측 평가 (Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model)

  • 서범근;변재영;임윤진;최병철
    • 한국지구과학회지
    • /
    • 제36권2호
    • /
    • pp.158-170
    • /
    • 2015
  • 큰 에디 모의과정을 포함한 WRF 모델 (WRF-LES)을 이용하여 수치모델의 수평공간 규모에 따른 대기경계층 모수화 실험과 LES 모의 결과를 지표층 근처의 풍속 예측에 대하여 비교하였다. 수치실험은 복잡한 산악지형과 해안지역을 포함하는 강원도 지역에서 수평해상도 1 km와 333 m 실험을 수행하였다. 수평해상도 1 km 실험은 대기경계층 모수화 방안을 채택하였으며, 333 m 실험에서는 LES를 이용하였다. 복잡한 산악지역에서의 풍속 예측의 정확성은 수평해상도 1 km 실험 보다 333 m 실험에서 향상되었으며 해안지역에서는 1 km 실험에서 관측과 더 일치하였다. 지표층 근처의 큰 난류를 직접 계산하는 LES 실험은 산악지역의 풍속예측 개선에 기여하였다.

미세먼지 예보시스템 개발 (A Development of PM10 Forecasting System)

  • 구윤서;윤희영;권희용;유숙현
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.666-682
    • /
    • 2010
  • The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.

3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석 (Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region)

  • 송동웅
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

영동 지역의 극한 대설 사례와 관련된 종관 환경 (Synoptic Environment Associated with Extreme Heavy Snowfall Events in the Yeongdong Region)

  • 권태영;조영준;서동희;최만규;한상옥
    • 대기
    • /
    • 제24권3호
    • /
    • pp.343-364
    • /
    • 2014
  • This study presents local and synoptic conditions associated with extreme heavy snowfall events in the Yeongdong region, as well as the temporal and spatial variability of these conditions. During the last 12 years (2001~2012), 3 extreme snowfall events occurred in the Yeongdong region, which recorded daily snowfall greater than 50 cm, respectively. In these events, one of the noticeable features is the occurrence of heavy hourly snowfall greater than 10 cm. It was reported from satellite analysis that these heavy snowfall may be closely related to mesoscale convective clouds. In this paper the 3 extreme events are examined on their synoptic environments associated with the developments of mesoscale convective system using numerical model output. These 3 events all occurred in strongly forced synoptic environments where 500 and 300 hPa troughs and 500 hPa thermal troughs were evident. From the analysis of diagnostic variables, it was found in all 3 events that absolute vorticity and cold air advection were dominant in the Yeongdong region and its surrounding sea at upper levels, especially at around 500 hPa (absolute vorticity: $20{\sim}60{\times}10^{-5}s^{-1}$, cold air advection: $-10{\sim}-20^{\circ}C$ $12hr^{-1}$). Moreover, the spatial distributions of cold advection showed mostly the shape of a narrow band along the eastern coast of Korea. These features of absolute vorticity and cold advection at 500 hPa were sustained for about 10 hours before the occurrence of maximum hourly snowfall.

복잡 해안지역 해상풍 모의의 정확도 개선-II: LAPS를 사용한 자료동화 (Improvements in the Simulation of Sea Surface Wind Over the Complex Coastal Area-II: Data Assimilation Using LAPS)

  • 배주현;김유근;정주희;권지혜;서장원;김용상
    • 한국환경과학회지
    • /
    • 제15권8호
    • /
    • pp.745-757
    • /
    • 2006
  • We focus on the improvement of accuracy of sea surface wind over complex coastal area doling the warm season. Local Analysis Prediction System (LAPS) was used to improve the initial values in Mesoscale Meteorological model (MM5). During the clear summer days with weak wind speed, sea surface wind simulated with LAPS was compared with the case without LAPS. The results of modeling with LAPS has a good agreement mesoscale circulation such as mountain and valley winds on land and in case of modeling without LAPS, wind speed overestimated over the sea in the daytime. And the results of simulation with LAPS indicated similar wind speed values to observational data over the sea under influence of data assimilation using BUOY, QuikSCAT, and AMEBAS. The present study suggests that MM5 modelling with LAPS showed more improved results than that of without LAPS to simulate sea surface wind over the complex coastal area.

수치모델을 이용한 인공증우에 따른 PM10 저감효과 분석 (Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models)

  • 임윤규;김부요;장기호;차주완;이용희
    • 대기
    • /
    • 제32권4호
    • /
    • pp.341-351
    • /
    • 2022
  • Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.

해수면온도와 식생효과를 고려한 연안도시지역의 대기환경예측 (Atmospheric Environment Prediction to Consider SST and Vegetation Effect in Coastal Urban Region)

  • 지효은;이화운;원경미
    • 한국환경과학회지
    • /
    • 제18권4호
    • /
    • pp.375-388
    • /
    • 2009
  • Numerical simulation is essential to indicate the flow of the atmosphere in the region with a complicated topography which consists of many mountains in the inland while it is neighboring the seashore. Such complicated topography produces land and sea breeze as the mesoscale phenomenon of meteorology which results from the effect of the sea and inland. In the mesoscale simulation examines, the change of the temperature in relation to the one of the sea surface for the boundary condition and, in the inland, the interaction between the atmosphere and land surface reflecting the characteristic of the land surface. This research developed and simulated PNULSM to reflect both the SST and vegetation effect as a bottom boundary for detailed meteorological numerical simulation in coastal urban area. The result from four experiments performed according to this protocol revealed the change of temperature field and wind field depending on each effect. Therefore, the lower level of establishment of bottom boundary suitable for the characteristic of the region is necessary to figure out the atmospheric flow more precisely, and if the characteristic of the surface is improved to more realistic conditions, it will facilitate the simulation of regional environment.

합성토지피복자료와 고해상도 중규모 모형을 이용한 시화호 지역의 토지이용 변화에 따른 주변 기상장 변화 연구 (A Study on Changes in Local Meteorological Fields due to a Change in Land Use in the Lake Shihwa Region Using Synthetic Land Cover Data and High-Resolution Mesoscale Model)

  • 박선기;김지희
    • 대기
    • /
    • 제21권4호
    • /
    • pp.405-414
    • /
    • 2011
  • In this study, the influence of a change in land use on the local weather fields is investigated around the Lake Shihwa area using synthetic land cover data and a high-resolution mesoscale model - the Weather Research and Forecasting (WRF). The default land cover data generally used in the WRF is based on the land use category of the United States Geological Survey (USGS), which erroneously presents most land areas of the Korean Peninsula as savannas. To revise such a fault, a multi-temporal land cover data, provided by the Ministry of Environment of Korea, was employed to generate a land cover map of 2005 subject to the land use in Korea at that time. A new land cover map of 1989, before the construction of the Lake Shihwa, was made based on the 2005 map and the Landsat 4-5 TM satellite images of two years. Over the areas where the land use had been changed (e.g., from sea to wetlands, towns, etc.) due to the Lake Shihwa development project, the skin temperature decreased by up to $8^{\circ}C$ in the winter case while increased by as much as $14^{\circ}C$ in the summer case. Changes in the water vapor mixing ratio were mostly affected by advection and topography in both seasons, with considerable increase in the summer case due to continuous sea breeze. Local decrease in water vapor occurred over high land use change areas and/or over downstream of such areas where alteration in wind fields were induced by changes in skin temperature and surface roughness at the areas of land use changes. The albedo increased by about 0.1% in the regions where sea was converted into wetland. In the regions where urban areas were developed, such as Songdo New Town and Incheon International Airport, the albedo increased by up to 0.16%.

한반도 호우유형의 중규모 특성 및 예보 가이던스 (Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula)

  • 김선영;송환진;이혜숙
    • 대기
    • /
    • 제29권4호
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Performance Evaluation of Four Different Land Surface Models in WRF

  • Lee, Chong Bum;Kim, Jea-Chul;Belorid, Miloslav;Zhao, Peng
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권1호
    • /
    • pp.42-50
    • /
    • 2016
  • This study presents a performance evaluation of four different land surface models (LSM) available in Weather Forecast Research (WRF). The research site was located in Haean Basin in South Korea. The basin is very unique by its geomorphology and topography. For a better representation of the complex terrain in the mesoscale model were used a high resolution topography data with a spatial resolution of 30 meters. Additionally, land-use layer was corrected by ground mapping data-sets. The observation equipments used in the study were an ultrasonic anemometer with a gas analyzer, an automatic weather station and a tethered balloon sonde. The model simulation covers a four-day period during autumn. The result shows significant impact of LSM on meteorological simulation. The best agreement between observation and simulation was found in the case of WRF with Noah LSM (WRF-Noah). The WRF with Rapid Update Cycle LSM (WRF-RUC) has a very good agreement with temperature profiles due to successfully predicted fog which appeared during measurements and affected the radiation budget at the basin floor. The WRF with Pleim and Xiu LSM (WRF-PX) and WRF with Thermal Diffusion LSM (WRF-TD) performed insufficiently for simulation of heat fluxes. Both overestimated the sensible and underestimated the latent heat fluxes during the daytime.