• 제목/요약/키워드: Mesoporous silica nanoparticle

검색결과 11건 처리시간 0.027초

Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate

  • Mao, Cong;Zhang, Jie;Xiao, Meitian;Liu, Yongjun;Zhang, Xueqin
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1480-1485
    • /
    • 2018
  • Mesoporous carbon-silica composites supported Pt nanoparticle catalysts (Pt/MCS) were firstly applied to the heterogeneous asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate (EOPB). A series of different silica contents were investigated in the fabrication of this mesoporous material. When the volume of added tetraethyl orthosilicate (TEOS) during the preparation of composites is 8 mL, Pt/MCS-8 holds carbon and silica as the main components and possesses relatively strong acidity, mesoporous structures with micropores, appropriate Pt nanoparticle size and high dispersibility showing by XRD, XPS, TPD, $N_2$ sorption and TEM. These properties cause its good catalytic performance in the heterogeneous asymmetric hydrogenation of EOPB with the enantiomeric excess value and conversion up to 85.6% and 97.8%, respectively.

이중 다공성 실리카 나노입자 합성 및 공극 크기 조절 (Synthesis of Double Mesoporous Silica Nanoparticles and Control of Their Pore Size)

  • Park, Dae Keun;Ahn, Jung Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.167-169
    • /
    • 2021
  • In this study, monodispersive silica nanoparticles with double mesoporous shells were synthesized, and the pore size of synthetic mesoporous silica nanoparticles was controlled. Cetyltrimethylammonium chloride (CTAC), N, N-dimethylbenzene, and decane were used as soft template and induced to form outer mesoporous shell. The resultant double mesoporous silica nanoparticles were consisted of two layers of shells having different pore sizes, and it has been confirmed that outer shells with larger pores (Mean pore size > 2.5 nm) are formed directly on the surface of the smaller pore sized shell (Mean pore size < 2.5 nm). It was confirmed that the regulation of the molar ratio of pore expansion agents plays a key role in determining the pore size of double mesoporous shells.

탄닌산을 이용한 나노입자 표면 개질 및 분석 (Tannic acid Mediated Surface Modification of Mesoporous Silica Nanoparticles)

  • 이주연;김형준
    • 접착 및 계면
    • /
    • 제23권3호
    • /
    • pp.70-74
    • /
    • 2022
  • 탄닌산은 식물 유래 폴리페놀 중 하나로, 대부분의 생체고분자와 분자간결합을 할 수 있어서 분자적 접착제로서 연구가 되어 왔으며, 표면 개질, 에너지 저장 및 발생 장치, 의료용 제재로서 활용이 되고 있다. 본 연구에서는 약물 전달과 바이오이미징 등 의생명공학 분야에서 다양하게 활용되는 다공성 실리카 나노입자를 합성하고, 탄닌산을 이용하여 다공성 실리카 나노입자의 표면을 개질 한 뒤, 나노입자의 표면을 분석하였다.

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • 윤석본;박대근;윤완수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Strain-promoted alkyne-azide cycloaddition for PET molecular imaging study

  • Jeong, Hyeon Jin;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.15-22
    • /
    • 2015
  • $^{18}F$-labeling reaction of bioactive molecule via click chemistry is widely used to produce $^{18}F$-labeled radiotracer in the field of radiopharmaceutical science and molecular imaging. In particular, bioorthogonal strain-promoted alkyne-azide cycloaddition (SPAAC) reaction has received much attention as an alternative ligation method for radiolabeling bioactive molecules such as peptides, DNA, proteins as well as nanoparticles. Moreover, SPAAC based pretargeting method could provide tumor images successfully on positron emission tomography system using nanoparticle such as mesoporous silica nanoparticles.

고분자 전해질 연료전지 백금-루테늄 나노입자 촉매의 전기화학적 거동에 대한 중형기공 탄소 지지체의 활성화 효과 (Influence of Activation of Mesoporous Carbon on Electrochemical Behaviors of Pt-Ru Nanoparticle Catalysts for PEMFCs)

  • 김병주;박수진
    • 폴리머
    • /
    • 제35권1호
    • /
    • pp.35-39
    • /
    • 2011
  • 본 연구에서는 고분자 전해질 연료전지의 타소 지지체로 중형기공 실리카(SBA-15)를 이용한 전통적인 주형합성법을 이용하여 중형기공 탄소(CMK-3)를 합성하였다. 합성된 CMK-3는 추가적으로 비표면적과 물리적 성질을 증가시키기 위하여 활성화제로 수산화 칼륨 (KOH)양을 0, 1, 3, 및 4g으로 달리하여 활성화하였다. 그리고 활성화된 CMK-3(K-CMK-3)에 화학적 환원 방법을 이용하여 백금과 루테늄을 답지하였다. CMK-3에 담지된 백금-루테늄 촉매의 특성을 확인하기 위해 비표면적 장치(BET), X-선 회절분석법(XRD), 주사전자현미경(SEM), 투과전자현미정(TEM), 유도결합 플라즈마 질량분석기(ICP-MS)를 이용하였다. 또한, 백금 루테늄 촉매의 전기화학적인 특성을 순환전류전압 실험으로 분석하였다. 결론적으로, 3 g의 KOH로 활성화된 CMK-3(K3g-CMK-3)가 가장 넓은 비표면적을 나타냈다. 또한, K3g-CMK-3의 높은 비표면적은 백금-루테늄의 균일한 분산과 함께 전기적인 촉매의 성능을 향상시키는 것을 확인할 수 있었다.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

친환경 타이어 충진제 적용을 위한 SiO2-ZnO 복합체 합성 및 특성평가 (Synthesis and Characterization of SiO2-ZnO Composites for Eco-Green Tire filler)

  • 전순정;송시내;강신재;김희택
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.357-363
    • /
    • 2015
  • 타이어 라벨링제 도입으로 인한 친환경 타이어 개발의 요구로 타이어산업에서 사용되고 있는 기존 산화아연의 문제점 개선을 위하여 나노산화아연과 나노기공 실리카와의 복합체 합성에 대한 연구를 진행하였다. 본 연구에서는 타이어의 트레드(tread) 부분에 적용될 기존의 고무 보강재인 카본블랙을 대체하기 위한 실리카와 나노산화아연의 복합체를 합성하기 위하여, 일정량의 나노기공 실리카를 함유하고 재질 상으로는 나노기공 실리카와 산화아연을 물리적 결합을 통하여 hysteresis 손상을 줄이면서 트레드의 탄성을 증대시키기 위해 내마모성능의 향상을 목표로 실험을 진행하였다. 이를 위하여 복합체와 고무 조성물과의 컴파운딩 시 낮은 활성도와 분산안정성 저하의 문제점 개선하고자 숙성시간(Aging time)과 몰 비 그리고 반응물의 반응 순서에 따라 미치는 영향에 대해 조사하였다. 0.03몰 비의 산화아연과 숙성기간 10일의 조건의 실리카에서 가장 작은 평균입도(약 50.5 nm)와 안정적인 분산성을 보였고, 약 $649m^2/g$의 높은 비표면적을 나타내었다.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자 (Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application)

  • 이은희;좌용호;김창열
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.