• Title/Summary/Keyword: Mesoporous ${\gamma}-Al_2O_3$

Search Result 5, Processing Time 0.021 seconds

Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite (카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성)

  • Lee, Gwang-Hyeon;Go, Hyeong-Sin;Kim, Yun-Seop
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.845-852
    • /
    • 2000
  • Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

  • PDF

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

Synthesis of C2 Chemicals from Methane in a Dielectric Barrier Discharge (DBD) Plasma Bed (메탄으로부터 촉매와 유전체 장벽 방전 반응기를 활용한 C2 화합물의 합성)

  • Oh, Ji-Hwan;Jeon, Jong Hyun;Jeoung, Jaekwon;Ha, Kyoung-Su
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.125-132
    • /
    • 2018
  • The direct synthesis of $C_2$ chemical directly from methane was studied by employing catalysts with ordered mesopores in a dielectric barrier discharge plasma reactor. The reaction was carried out using MgO/OMA (ordered mesoporous alumina), $MgO/{\gamma}-Al_2O_3$ and $MgO/{\alpha}-Al_2O_3$ as catalysts. When MgO/OMA was applied, it showed excellent performance in the plasma reactor using pulse-type power supply and the selectivity of $C_2$ chemicals was measured as 67%. The effects of metal oxide type, textural property of support, alumina phase and power supply type on catalytic performance were investigated especially in terms of $C_2$ chemical formation. BET (Brunauer, Emmett, Teller), X-ray diffraction, transmission electron microscope and thermogravimetric analysis were used to investigate the characterization of the catalyst before and after the reaction.

Conversion of Cellulose over Ni Loaded Mesoporous MSU-F Catalysts via Air Gasification

  • Park, Young-Kwon;Park, Kyung Sun;Kim, Seong-Soo;Park, Sung Hoon;Jung, Sang-Chul;Kim, Sang Chai;Jeon, Jong-Ki;Jeon, Ki-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3205-3208
    • /
    • 2014
  • Catalytic gasification of cellulose was carried out in a U-type fixed reactor with Ni loaded MSU-F catalyst (Ni/MSU-F) and Ni loaded ${\gamma}-Al_2O_3$ (Ni/${\gamma}-Al_2O_3$). The characteristics of the catalysts were analyzed by using X-ray diffraction, $H_2$-temperature programmed reduction, and Brunauer-Emmett-Teller analyses. The operation conditions of catalytic gasification reactions were $750^{\circ}$ and 0.2 equivalence ratio. Air was used as gasification agent. Catalytic gasification characteristics, such as gas yield and gas composition ($H_2$, CO, $CO_2$, $C_1-C_4$), were measured and calculated. The gas yield of Ni/MSU-F was much higher than that of Ni/${\gamma}-Al_2O_3$. Especially high amount of hydrogen was produced by Ni/MSU-F.

Dehydration of D-Xylose into Furfural Using Propylsulfonic Acid Modified Mesoporous Silica (황산 표면개질 메조다공 실리카를 이용한 푸르푸랄 제조에 관한 연구)

  • Kim, Eun-Gyu;Kim, Saet-Byul;Park, Eun-Duck;Kim, Sang-Wook
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.95-102
    • /
    • 2010
  • Sulfonic acid (-SO3H) functionalized mesoporous silica containing HMS, SBA 15(S15), MCM 41(M41) were synthesized by post-synthesis and co-condensation method. Their catalytic performance is tested by dehydration reaction of D-xylose to furfural. As a result, good conversion and selectivity was obtained using water as an environmentally friendly solvent. Additionally, increased amounts of sulfuric acid in catalysts resulted in improved conversion of D-xylose. All of the acid-functionalized mesoporous silica showed higher selectivity than other solid acids such as ${\gamma}-Al_{2}O_{3}$ and zeolite.