• 제목/요약/키워드: Mesoderm formation

검색결과 12건 처리시간 0.03초

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in Vitro

  • Kim, Sung-Eun;Kim, Byung-Kak;Gil, Jung-Eun;Kim, Suel-Kee;Kim, Jong-Hoon
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.49-56
    • /
    • 2007
  • One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.

멍게 배발생 과정에서 중배엽 형성과 패턴화 (Mesodermal Formation and Patterning during Ascidian Embryogenesis)

  • 김길중;니시다히로키
    • 한국발생생물학회지:발생과생식
    • /
    • 제6권2호
    • /
    • pp.77-82
    • /
    • 2002
  • 원시적인 척삭동물인 멍게에서 초기 배 세포운명은 모성 세포질인자와 유도적 상호작용에 의하여 결정된다. 매우 단순한 구조를 하고 있는 멍게 올챙이형 유생의 주요한 중배엽 조직으로 척삭, 근육 및 간충직이 존재한다. 근육 세포의 형성은 세포의 자율적인 과정으로, 초기 배의 후부 가장자리에 국재하는 모성 macho-1 mRNA에 의하여 근육 세포의 운명이 결정된다. 이에 반하여, 내배엽 전구세포의 유도작용은 척삭과 간충직 세포의 운명결정에 있어서 중요한 역할을 한다. FGF-Ras-MAPK 신호전달 과정은 이들 조직의 유도에 관여한다. 간충직과 척삭 전구세포에서 FGF신호에 대한 반응성의 차이는 난자의 후방 식물극 세포질에서 유래하는 인자의 존재 또는 부재에 의하여 야기된다. 간충직과 척삭 세포의 유도에 있어서, 지시적 인 신호는 유도신호를 받은 세포를 극성 화하고, 서로 다른 세포운명을 가진 두 개의 딸세포가 형성 되도록 비대칭 세포분열을 촉진한다.

  • PDF

치아 기관배양시 골형성단백의 역할에 관한 연구 (THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE)

  • 정일혁;정종훈;정필훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권5호
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.

Spatio-temparal Pattern Formation of Abdominal Muscle in Xenopus Iaevis

  • Ko, Che-Myong;Chung, Hae-Moon
    • Animal cells and systems
    • /
    • 제1권2호
    • /
    • pp.329-335
    • /
    • 1997
  • The final pattern of the skeletal muscle of a vertebrate depends on the position-specific behavior of the muscle precursor cells during early developmental process and the abdominal muscle is made of cells which migrate a relatively long distance from their original tissue, myotome of dorsal mesoderm. We report the spatia-temporal migration pattern of abdominal muscle in Xenopus laevis by in situ hybridization and immunohistological studies. Shortly after hatching tadpole stage (stage 31/32), a group of myotomal cells detaches from the lower tip of the second somite and migrates ventrally to the lower position of abdomen. At stage 34/35, a second cell group migrates away from the third somite. Total 7 myotomal cell groups migrate ventrally one by one from the second to eighth myotome along their own pathways through the cell free space located between epidermis and subepidermal layer of the abdomen. During migration, the sizes of the cell groups (abdominal muscle anlagens) are increased to several tens fold. Around stage 40 all the abdominal muscle anlagens reaches their final positions and are interconnected side by side rostrocaudally. They are also connected to other types of muscles, forming a large multisegmented abdominal muscle. Heat shock study suggests that the disruption of segmentation of somites does not block the detachment of abdominal muscle anlagen, though the treatment gave stage- and dosagedependent effects on the migration speed.

  • PDF

Xenopus laevis 초기 배의 동물극 분리배양에서 bFGF와 HGF 혼합처리에 의한 기관유도 (Organ Induction by Combined Dose of bFGF and HGF in Animal Cap Assay of Early Xenopus laevis Embryos.)

  • 진정효;윤춘식;이호선;박용욱;정선우
    • 생명과학회지
    • /
    • 제14권3호
    • /
    • pp.375-384
    • /
    • 2004
  • FGFs는 Xenopus의 초기 배발생에서 중배엽 형성, 전후축패턴형성, scatter factor로서 낭배기의 기관형성에 관여하는 등 다양한 기능을 가지고 있는 것으로 알려져 있다 그 중 bFGF는 배양 분리편으로부터 다양한 기관을 유도해낼 수 있으며 그 효과는 처리시간 및 농도 의존적이라고 알려져 왔다. 본 연구는 Xenopus의 예정표피역을 분리하여 bFGF와 HGF을 단독 및 복합처리 하였을 때 기관분화 및 유도효과를 검토하기 위하여 실시하였다. 단독처리 및 복합 처리된 배양액에 동물극 분리편을 정상배가 st. 43에 이를 때까지 2$0^{\circ}C$에서 3일간 배양하여 조직학적 및 면역조직화학적 방법으로 조직의 분화양상을 확인하였다. 성장인자는 bFGF를 0, 0.5, 1. 10. 50 ng/ml의 농도와 HGF를 0, 1, 10, 50, 100ng/ml의 농도로 조합하여 처리한 결과 bFGF 단독처리 때보다 HGF와의 혼합처리에서 기관분화율의 상승효과가 관찰되었다. 분화된 기관은 1 ng/ml의 bFGF 와 10ng/ml의 HGF, 10ng/ml의 bFGF와 1ng/ml의 HGF의 농도에서 매우 다양한 것으로 나타났다. 눈은 1과 10ng/ml의 bFGF ,그리고 1과 10 ng/ml의 HGF 농도조합에서 높은 비율로 분화하였다. 또한 분리편 배양에 의해 유도된 눈과 정상 배의 눈에서 RPE65를 인식하는 단일클론 항체 40All, 25F5를 사용하여 AP 반응이 강하게 나타나 눈의 유도를 확인할 수 있었다.

Zic3z Defines the Dorsal and Vegetal Neuroectoderm in the Zebrafish Embryonic Development

  • Lee, Kyu-Sun;Huh, Tae-Lin;Lee, Chang-Joong;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • 제12권1호
    • /
    • pp.23-33
    • /
    • 2008
  • The Zic family is a group of genes encoding zinc finger proteins that are highly expressed in the mammalian cerebellum. Zic genes are the vertebrate homologue of Drosophila pair-rule gene, odd-paired(opa), which plays important roles in the parasegmental subdivision as well as in the visceral mesoderm development of Drosophila embryos. Recent studies on human, mouse, frog, fish and ascidian Zic homologues support that Zic genes are involved in a variety of developmental processes, including neurogenesis, myogenesis, skeletal patterning, and left-right axis establishment. In an effort to explore possible functions of Zic proteins during vertebrate embryogenesis, we initially examined more detailed expression pattern of zebrafish homologue of zic3(zic3z). zic3z transcripts are detected in the neuroectoderm, neural plate, dorsal neural tube, and brain regions including eye field during early embryonic development. Marker DNA studies found that zic3z transcription is modulated by BMP, Wnt, and Nodal signals particularly in the dorsal and vegetal neuroectoderm at gastrula. Interfering with zic3z translation with zic3z-specific morpholino causes abnormal brain formation and expansion of the optic stalk cells. Retinal ganglion cells(RGCs) undergo abnormal neuronal differentiation. These findings suggest that zic3z defines the dorsal and vegetal neuroectoderm to specify brain formation and retinal neurogenesis during early embryonic development.

Teratoma Formation in Immunocompetent Mice After Syngeneic and Allogeneic Implantation of Germline Capable Mouse Embryonic Stem Cells

  • Aldahmash, Abdullah;Atteya, Muhammad;Elsafadi, Mona;Al-Nbaheen, May;Al-Mubarak, Husain Adel;Vishnubalaji, Radhakrishnan;Al-Roalle, Ali;Al-Harbi, Suzan;Manikandan, Muthurangan;Matthaei, Klaus Ingo;Mahmood, Amer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5705-5711
    • /
    • 2013
  • Background: Embryonic stem cells (ESCs) have the potential to form teratomas when implanted into immunodeficient mice, but data in immunocompetent mice are limited. We therefore investigated teratoma formation after implantation of three different mouse ESC (mESC) lines into immunocompetent mice. Materials and Methods: BALB/c mice were injected with three highly germline competent mESCs (129Sv, BALB/c and C57BL/6) subcutaneously or under the kidney capsule. After 4 weeks, mice were euthanized and examined histologically for teratoma development. The incidence, size and composition of teratomas were compared using Pearson Chi-square, t-test for dependent variables, one-way analysis of variance and the nonparametric Kruskal-Wallis analysis of variance and median test. Results: Teratomas developed from all three cell lines. The incidence of formation was significantly higher under the kidney capsule compared to subcutaneous site and occurred in both allogeneic and syngeneic mice. Overall, the size of teratoma was largest with the 129Sv cell line and under the kidney capsule. Diverse embryonic stem cell-derived tissues, belonging to the three embryonic germ layers, were encountered, reflecting the pluripotency of embryonic stem cells. Most commonly represented tissues were nervous tissue, keratinizing stratified squamous epithelium (ectoderm), smooth muscle, striated muscle, cartilage, bone (mesoderm), and glandular tissue in the form of gut- and respiratory-like epithelia (endoderm). Conclusions: ESCs can form teratomas in immunocompetent mice and, therefore, removal of undifferentiated ESC is a pre-requisite for a safe use of ESC in cell-based therapies. In addition the genetic relationship of the origin of the cell lines to the ability to transplant plays a major role.

다중 역전사 중합효소 연쇄 반응(Multiplex RT-PCR)을 이용한 인간배아 줄기세포 및 유도만능 줄기세포의 효과적인 분화 양상 조사 (Effective Application of Multiplex RT-PCR for Characterization of Human Embryonic Stem Cells/ Induced Pluripotent Stem Cells)

  • 김정모;조윤정;손온주;홍기성;정형민
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.

PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos

  • Yoon, Jaeho;Kim, Jung-Ho;Lee, Sung-Young;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.673-678
    • /
    • 2014
  • During Xenopus early development, FGF signaling is involved in mesoderm formation and neurogenesis by modulating various signaling cascades. FGF-MAPK signaling induces Xbra expression, which maintains mesodermal fate through an autocatalytic-loop. Interestingly, previous reports have demonstrated that basic FGF (bFGF) treatment alone does not induce neurogenesis in ectodermal explants, even though FGF signaling inhibits BMP signaling via phosphorylation in Smad1 linker region. In addition, the overexpression of dominantnegative Xbra induces neurogenesis in ectodermal explants. However, the detailed mechanism underlying these phenomena has not yet been clarified. In this work, we showed that bFGF-Xbra signaling increased the PV.1 expression. DN-Xbra was found to decrease PV.1 expression, and the co-injection of PV.1 with DN-Xbra reduced neurogenesis in ectodermal explants. Furthermore, the knockdown of PV.1 induced neurogenesis in bFGF-treated ectodermal explants. Taken together, our results demonstrate that FGF-Xbra signaling induces PV.1 expression and that PV.1 functions as a neural repressor in the FGF-treated ectoderm.