• Title/Summary/Keyword: Mesh processing

Search Result 420, Processing Time 0.021 seconds

Development of Remeshing Algorithm using Mesh Compression Method (격자 압축법을 이용한 격자 재구성 알고리즘 개발)

  • Hong J. T.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.62-65
    • /
    • 2000
  • For saving time and cost of experiment Finite Element Method has been developed for several decades. It's the defect of FEM that when we are in processing of finite element analysis, the material if deformed so much that we can't proceed analysis any more. In this case, the remeshing process should be done on this material. In hot forging process, almost all remeshing process does not consider flash of the material. Because as mesh size become swatter, consuming time become larger. But if mesh size is big, there is the defect that the result of analysis is not so accurate. So, new remeshing algorithm is needed to save time and to get more accurate result.

  • PDF

Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics

  • Matsubara, Hitoshi;Yagawa, Genki
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.277-293
    • /
    • 2009
  • The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.

Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I) (비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I))

  • 김영석;최홍석;임성언
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF

A New All-Hexahedral Refinement Technique by Automatic Expansion of Zero Thickness Element Layers (무두께 요소층을 이용한 육면체 격자의 세분화 기법)

  • 박철현;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.334-339
    • /
    • 2003
  • This paper presents a new algorithm that enables the refinement of hexahedral elements while maintaining the appropriate connectivity. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is applied to the analysis of plastic deformation process. The results show that the refined mesh gives smaller relative errors than the original mesh.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Volume Mesh Parameterization for Topological Solid Sphere Models (구형 위상구조 모델에 대한 볼륨메쉬 파라메터화)

  • Kim, Jun-Ho;Lee, Yun-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.106-114
    • /
    • 2010
  • Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.

Automatic Mesh Generation System for FE Analysis of 3D Crack (3차원 균열의 유한요소해석을 위한 자동요소분할 시스템)

  • Lee, Ho-Jeong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2183-2188
    • /
    • 2009
  • This paper describes an automatic mesh generation system for finite element analysis of three-dimensional cracks. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three sub-processes: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional crack structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Practical performances of the present system are demonstrated through several mesh generations for 3D cracks.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

Performance Analysis of Routing Protocols for WLAN Mesh Networks (WLAN Mesh 망을 위한 라우팅 기법의 성능 분석)

  • Park, Jae-Sung;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.417-424
    • /
    • 2007
  • Mesh networks using WLAN technology have been paid attention as a key wireless access technology. However, many technical issues still exist for its successful deployment. One of those issues is the routing problem that addresses the path setup through a WLAN mesh network for the data exchanges between a station and a wired network. Since the characteristics of a WLAN mesh network can be very dynamic, the use of single routing protocol would not fit for all environments whether it is reactive or proactive. Therefore, it is required to develop an adaptive routing protocol that modifies itself according to the changes in the network parameters. As a logical first step for the development, an analytical model considering all the dynamic features of a WLAN mesh network is required to evaluate the performance of a reactive and a proactive routing scheme. In this paper, we propose an analytical model that makes us scrutinize the impact of the network and station parameters on the performance of each routing protocol. Our model includes the size of a mesh network, the density of stations, mobility of stations. and the duration of network topology change. We applied our model to the AODV that is a representative reactive routing protocol and DSDV that is a representative proactive routing protocol to analyze the tradeoff between AODV and DSDV in dynamic network environments. Our model is expected to help developing an adaptive routing protocol for a WLAN mesh network.