• Title/Summary/Keyword: Mesh optimization

Search Result 213, Processing Time 0.028 seconds

Distributed Rate and Congestion Control for Wireless Mesh Networks

  • Quang, Bui Dang;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.916-922
    • /
    • 2007
  • Wireless networks (WNs) are developed and applied widely in a lot of areas. Now, a new generation of wireless networks is coming, and that is Wireless Mesh Network (WMN). At present, there are not so many researches which deal on this area. Most researches are derived from Mobile Ad hoc Networks (MANET) and WNs. In WMNs, there are some applications that require real-time delivery. To guarantee this, rate control and congestion control are needed. This problem leads to optimization issue in transport layer. In this paper, we propose a mathematical model which is applied in rate and congestion control in WNMs. From this model, we optimize rate and congestion control in WMNs by maximizing network utility. The proposed algorithm is implemented in distributed way both in links and sources.

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

Non-iterative Global Mesh Smoothing with Feature Preservation

  • Ji, Zhongping;Liu, Ligang;Wang, Guojin
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.89-97
    • /
    • 2006
  • This paper presents a novel approach for non-iterative surface smoothing with feature preservation on arbitrary meshes. Laplacian operator is performed in a global way over the mesh. The surface smoothing is formulated as a quadratic optimization problem, which is easily solved by a sparse linear system. The cost function to be optimized penalizes deviations from the global Laplacian operator while maintaining the overall shape of the original mesh. The features of the original mesh can be preserved by adding feature constraints and barycenter constraints in the system. Our approach is simple and fast, and does not cause surface shrinkage and distortion. Many experimental results are presented to show the applicability and flexibility of the approach.

An optimized mesh partitioning in FEM based on element search technique

  • Shiralinezhad, V.;Moslemi, H.
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.311-320
    • /
    • 2019
  • The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the proposed algorithms is demonstrated in numerous examples for different size of substructures.

The Output Characteristics and the Optimization of Parallel-mesh Circuit of a Pulsed Nd:YAG Laser by Using a Circular Cavity (원형 Cavity를 이용한 펄스형 Nd:YAG레이저의 출력특성 및 병렬메쉬 회로의 최적화)

  • Yang, D.M.;Kim, B.G.;Park, K.R.;Hong, J.H.;Kang, W.;Kim, W.Y.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2201-2203
    • /
    • 1999
  • In this study, we have designed and manufactured not a present elliptic cavity but a circular cavity and we have experimented the operational characteristics. As a result, we obtained the maximum efficiency of 2.1 %. It didn't have any difference compared with elliptic cavity. A circular cavity is much more compact, so far easier to be manufactured than a elliptic cavity. And it can be made at a low cost. At the input energy, parameter $\alpha$, input voltage, and pulse width were in the same condition, we have decided to the optimization of the mesh number of a parallel-mesh circuit which was connected with main power supply.

  • PDF

An adaptive X-FEM and its application to shape optimization (적응 확장 유한요소기법과 형상최적설계로의 응용)

  • Yu, Yong-Gyun;Huh, Jae-Sung;Tezuka, Akira;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.538-543
    • /
    • 2007
  • A procedure is proposed to generate optimal grid with minimal user intervention while keeping a prescribed level of accuracy, using an adaptive X-FEM and applied to shape optimization. In spite of various advantages of X-FEM, however, there are several obstacles for practical applications. Because of using a uniform background mesh and additional degree of freedoms for enrichment, an X-FEM is usually computationally more expensive than traditional finite element method. Furthermore, there are often accuracy problems. For an automatic procedure of optimal mesh generation, an h-adaptive scheme and a posteriori error estimation obtained by a post-processing process are utilized. The procedure is shown by 2-D shape optimization examples.

  • PDF

Study on Shape Optimization Using Finite Elements Addition and Removal (요소가감법을 이용한 형상최적설계에 관한 연구)

  • Kim, Young-Jin;Lim, Kyeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.486-491
    • /
    • 2000
  • In this study, finite elements addition and removal method by stress range is applied to optimize shapes in structures, without using classical and numerical optimization methods and search methods. The program based on this algorithm is developed and compared to theoritial results with considerable accuracy. Classical methods need mesh generation for finite element analysis for every iteration, the developed method needs updated mesh data such as coordinates of nodes, elements connectivity, and loads on nodes. And other tools of finite element analysis can be in use as a black box to interface with this program.

  • PDF

The 3D Shape Optimal Design of Transformer Tank Shield by Using Parameterized Design Sensitivity Analysis

  • Yao, Ying-Ying;Ryu, Jae-Seop;Koh, Chang-Seop;Xie, Dexin
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.80-83
    • /
    • 2002
  • A 3D shape optimization algorithm integrates the geometric parameterizationi 3D F.E. performance analysis, steepest descent method with design sensitivity and mesh relocation method. The design sensitivity of the surface nodal points is also systematically converted into that of the design variables for the application to parameterized optimization. The proposed algorithm is applied to the optimum design of tank shield model of transformer and the effectiveness is proved.

  • PDF

Shape Optimization of 3D Nonlinear Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계 민감도법과 요소망 변형법을 이용한 3차원 비선형 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Yingying, Yao;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.124-127
    • /
    • 2002
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D nonlinear finite element method with edge element. The proposed algorithm is applied to the shape optimization of 3D electromagnet to get a uniform flux density at the air gap.

  • PDF

Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique (부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경)

  • 이준호;정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF