• Title/Summary/Keyword: Mesh editing

Search Result 15, Processing Time 0.025 seconds

Multiresolution Mesh Editing based on the Extended Convex Combination Parameterization (확장 볼록 조합 매개변수화 기반의 다중해상도 메쉬 편집)

  • 신복숙;김형석;김하진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1302-1311
    • /
    • 2003
  • This paper presents a more stable method of multiresolution editing for a triangular mesh. The basic idea of our paper is to embed an editing area of a mesh onto a 2D region and to produce 3D surfaces which interpolate the editing-information. In this paper, we adopt the extended convex combination approach based on the shape-preserving parameterization for the embedding, which guarantees no self-intersection on the 2D embedded mesh. That is, the result of the embedding is stable. Moreover, we adopt the multi-level B-spline approach to generate the surface containing all of 3D editing-information, which can make us control the editing area in several levels. Hence, this method supports interactive editing and thus can produce intuitive editing results.

  • PDF

Mesh Editing Using the Motion Feature Vectors (운동 특성 벡터에 기반한 메쉬 에디팅 기법)

  • Lee, Soon-Young;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.214-221
    • /
    • 2008
  • In this paper, we proposed a new mesh editing algorithm based on the motion between two sample meshes. First, the motion vectors are defined as the derivation vector of the corresponding vertices on the sample meshes. Then, the motion feature vectors are extracted between the motion vectors. The motion feature vectors represent the similarity of the vertex motion in a local mesh surface. When a mesh structure is forced by an external motion of anchor vertices, the deformed mesh geometry is obtained by minimizing the cost function with preserving the motion feature vectors. Simulation results demonstrated that the proposed algorithm yields visually pleasing editing results.

An Interactive 3D Mesh Editing System for Printing Object Larger Than the Printing Volume of 3D Printer (3차원 프린터의 출력 볼륨보다 큰 물체를 출력하기 위한 인터랙티브 3차원 메쉬 편집 시스템)

  • Chu, Chang Woo;Kim, Kap Kee;Park, Chang Joon;Choi, Jin Sung
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1619-1625
    • /
    • 2016
  • Recently, as the public interests about the 3D printing technology are increased, various kinds of 3D printers are being released. But, they are limited to use because they cannot fabricate an object which is larger than the printer's printing volume. To relieve this problem, we propose an interactive 3D mesh editing system for 3D printing the object that is larger than the printing volume. The proposed 3D editing system divides the input 3D mesh using the user's line drawings defining cutting planes and it attaches various connectors. The output meshes are guaranteed to fabricate without post-processing. The printed parts can be assembled using the connectors. Our proposed system has an advantage that it can be used easily by non-professional 3D printer users.

An Interactive Perspective Scene Completion Framework Guided by Complanate Mesh

  • Hao, Chuanyan;Jin, Zilong;Yang, Zhixin;Chen, Yadang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.183-200
    • /
    • 2020
  • This paper presents an efficient interactive framework for perspective scene completion and editing tasks, which are available largely in the real world but rarely studied in the field of image completion. Considering that it is quite hard to extract perspective information from a single image, this work starts from a friendly and portable interactive platform to obtain the basic perspective data. Then, in order to make this interface less sensitive, easier and more flexible, a perspective-rectification based correction mechanism is proposed to iteratively update the locations of the initial points selected by users. At last, a complanate mesh is generated by the geometry calculations from these corrected initial positions. This mesh must approximate the perspective direction and the structure topology as much as possible so that the filling process can be conducted under the constraint of the perspective effects of the original image. Our experiments show the results with good qualities and performances, and also demonstrate the validity of our approaches by various perspective scenes and images.

Geometric Snakes for Triangular Meshes (삼각 메쉬를 위한 기하학 스네이크)

  • Lee, Yun-Jin;Lee, Seung-Yong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • Feature detection is important in various mesh processing techniques, such as mesh editing, mesh morphing, mesh compression, and mesh signal processing. In this paper, we propose a geometric snake as an interactive tool for feature detection on a 3D triangular mesh. A geometric snake is an extension of an image snake, which is an active contour model that slithers from its initial position specified by the user to a nearby feature while minimizing an energy functional. To constrain the movement of a geometric snake onto the surface of a mesh, we use the parameterization of the surrounding region of a geometric snake. Although the definition of a feature may vary among applications, we use the normal changes of faces to detect features on a mesh.

  • PDF

A study on the two-dimensional automatic mesh generation programming (2차원 자동요소분할 프로그램 개발에 관한 연구)

  • 조명철;유형선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.720-725
    • /
    • 1991
  • This paper is concerned with the program of the automatic mesh generation for 2-dimensional domain which contains the curved boundaries and holes. This program treats a new vertical - line drawing method. This method starts with 4-subdivisions of problem domain and the classification of the cross points of grid lines and boundaries. And the new node is generated by the vertical line to the line connecting the two intersections of a boundary and two grid lines in general. The boundaries are piecewise-curves composed of lines, circles, arcs, and free curves. The free curves are generated by B-Spline form. Although there were some bad elements for the complex boundary, it was possible to obtain the acceptable elements for the given boundaries. The results of automatic mesh generation can be verified directly by drawing on the computer monitor in executing the program. And it is possible to add the processes - that is, editing, hard copying, etc - using the script file in Auto-CAD.

  • PDF

Geometric LiveWire and Geometric LiveLane for 3D Meshes (삼차원 메쉬에 대한 기하학 라이브와이어와 기하학 라이브레인)

  • Yoo Kwan-Hee
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.13-22
    • /
    • 2005
  • Similarly to the edges defined in a 2D image, we can define the geometric features representing the boundary of the distinctive parts appearing on 3D meshes. The geometric features have been used as basic primitives in several applications such as mesh simplification, mesh deformation, and mesh editing. In this paper, we propose geometric livewire and geometric livelane for extracting geometric features in a 3D mesh, which are the extentions of livewire and livelane methods in images. In these methods, approximate curvatures are adopted to represent the geometric features in a 3D mesh and the 3D mesh itself is represented as a weighted directed graph in which cost functions are defined for the weights of edges. Using a well-known shortest path finding algorithm in the weighted directed graph, we extracted geometric features in the 3D mesh among points selected by a user. In this paper, we also visualize the results obtained from applying the techniques to extracting geometric features in the general meshes modeled after human faces, cows, shoes, and single teeth.

Motion Simplification of Virtual Character (가상 캐릭터의 동작 단순화 기법)

  • Ahn, Jung-Hyun;Oh, Seung-Woo;Wohn, Kwang-Yun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.759-767
    • /
    • 2006
  • The level-of-detail (LoD), which is a method of reducing polygons on mesh, is one of the most fundamental techniques in real-time rendering. In this paper, we propose a novel level-of-detail technique applied to the virtual character's motion (Motion LoD). The movement of a virtual character can be defined as the transformation of each joint and it's relation to the mesh. The basic idea of the proposed 'Motion LoD' method is to reduce number of joints in an articulated figure and minimize the error between original and simplified motion. For the motion optimization, we propose an error estimation method and a linear system reconstructed from this error estimation for a fast optimization. The proposed motion simplification method is effectively useful for motion editing and real-time crowd animation.

Intuitive Mesh Editing Method using Modifying Primitives (프리미티브 수정을 이용한 직관적 메쉬 에디팅 방법)

  • Yang, Jinsuk;Oh, Kyoungsu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.6-9
    • /
    • 2016
  • 최근 3D 스캔 장비 발전과 함께 물체를 스캔하여 모델링하는 역설계 기술이 발전하고 있다. 하지만 역설계를 통해 만들어진 메쉬는 3D 스캔 장비의 데이터 누락, 측정 에러와 같은 이유 때문에 무딘 모서리, 거친 표면과 같은 에러가 발생한다. 이러한 에러를 제거하기 위해 다양한 메쉬 에디팅 방법이 연구되고 있다. 대부분의 기존 방법은 특정 영역을 세밀하게 에디팅 하기 때문에 사용자 에디팅 능력에 따라 메쉬 품질이 달라지고, 에디팅 시간도 오래 걸린다. 본 논문은 프리미티브 수정을 이용한 새로운 메쉬 에디팅 방법을 제안한다. 먼저 원본 메쉬를 모양에 따라 여러 개의 메쉬 세그먼트로 나눈다. 그런 다음 각 메쉬 세그먼트에 프리미티브 타입을 지정하고 해당 파라미터를 수정하여 사용자가 원하는 모양으로 에디팅 한다. 제안한 방법은 프리미티브 수정 기반의 직관적 사용자 인터페이스를 지원하며 빠른 시간 안에 사용자가 의도한대로 에디팅 할 수 있다.