• 제목/요약/키워드: Mesh Structure

검색결과 624건 처리시간 0.023초

A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System (선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발)

  • Kim I.I.;Choi J.H.;Jo H.J.;Suh H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • 제10권1호
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

Effect of Mesh Screen Device on Over-Expanded Supersonic Jet Noise (메쉬 스크린 장치가 과팽창 초음속 제트소음에 미치는 영향)

  • Kweon, Yong-Hun;Kim, Jae-Hyung;Lim, Chae-Min;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3150-3155
    • /
    • 2007
  • This paper describes an experimental work to investigate the effect of mesh screen device on the jet structure and acoustic characteristics of over-expanded supersonic jet. The mesh screen device is placed into the supersonic jet stream. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The diameter of the perforated hole and the location of mesh screen device are varied. A Schlieren optical system is used to visualize the flow fields of supersonic jet without and with the mesh screen device. Pitot pressure measurement is carried out to obtain the pressure distribution in the jet flow. Acoustic measurement also is performed to obtain the OASPL and noise spectra. The results obtained show that the jet structure and the jet noise control effectiveness is strongly dependent upon the diameter of the perforated hole and the location of the mesh screen device in the jet stream. Provided that the mesh screen device is placed at the location to perturb effectively the initial shear layer, the present control method is effective in suppressing the supersonic jet noise.

  • PDF

A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure (Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구)

  • Jin, Sang-Mun;Beack, Suk-Min;Heo, Seong-Il;Yang, Yoo-Chang;Kim, Sae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제21권4호
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

Design of Transparent Electromagnetic Absorbing Structure using Metal Grid Mesh Printing (Metal Grid Mesh 인쇄를 이용한 투명 전파 흡수구조 설계)

  • Yoon, Sun-Hong;Lee, Jun-Sang;Lee, In-Gon;Hong, Ic-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제19권3호
    • /
    • pp.294-301
    • /
    • 2016
  • In this paper, we designed the transparent circuit analog radar absorbing structure using printed metal grid mesh for enhanced optical transmittance. To obtain wideband electromagnetic absorption and enhanced optical transparency at X-band, we proposed the resistive FSS(Frequency Selective Surface) using printed metal mesh pattern on transparent glass with PEC(Perfect Electric Conductor) plane using ITO(Indium Thin Oxide) coating. We then fabricated the proposed structure to verify the simulation results obtained from commercial EM simulator. The comparisons between the simulation and measured results show good agreements. The results also show that the proposed radar absorbing structure can provide wideband reflection as well as better optical transparency. We can apply this proposed structure to the canopy of stealth aircraft and other stealth and security applications for visible transparency.

A study on the characteristic of Dye-sensitized solar cell with mesh structure of counter electrode (Mesh구조의 상대전극을 갖는 염료감응형태양전지의 특성연구)

  • Jang, Jin-Ju;Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyoung-Jun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.131-133
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitized solar cell (DSC) has been very economical and easy method to convert solar energy to electricity. Recently a novel tandem cell structure is proposed to improve photocurrent of DSC. To fabricated a tandem cell, the mesh structure of counter electrode is essential for the improvement in transmittance. In this study, we conducted the experiment to get the characteristic of DSC with mesh counter electrode. Under the standard test condition (AM 1.5, 100mW/$cm^2$), we obtained the maximum efficiency of 3.41% and the transmittance of 72% in the DSC with mesh counter electrode.

  • PDF

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제21권2호
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

A Compact and Efficient Polygonal Mesh Representation (간결하고 효율적인 폴리곤 메쉬의 표현 구조)

  • Park S. K.;Lee S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • 제9권4호
    • /
    • pp.294-305
    • /
    • 2004
  • Highly detailed geometric models are rapidly becoming commonplace in computer graphics and other applications. These complex models, which is often represented as complex1 triangle meshes, mainly suffer from the vast memory requirement for real-time manipulation of arbitrary geometric shapes without loss of data. Various techniques have been devised to challenge these problems in views of geometric processing, not a representation scheme. This paper proposes the new mesh structure for the compact representation and the efficient handling of the highly complex models. To verify the compactness and the efficiency, the memory requirement of our representation is first investigated and compared with other existing representations. And then we analyze the time complexity of our data structure by the most critical operation, that is, the enumeration of the so-called one-ring neighborhood of a vertex. Finally, we evaluate some elementary modeling functions such as mesh smoothing, simplification, and subdivision, which is to demonstrate the effectiveness and robustness of our mesh structure in the context of the geometric modeling and processing.

A new ALE finite element techniques for wind-structure interactions

  • Choi, Chang-Koon;Yu, Won-Jin
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.291-302
    • /
    • 2000
  • A new finite element technique to solve the problem of wind and structure interactions is presented. Conventionally, wind analysis is performed on the Eulerian description in which the finite element mesh would not move in accordance with the wind flow. However, it is not the case in wind-structure interaction problems because nodes attached to the surface of structure should move with the displacement of structure. The arbitrary Lagrangian-Eulerian (ALE) method treats the mesh and flow independently, and allow the mesh to move. In this study, the analysis domain is divided into regions of the structure, air around the structure and the interface of two regions. To satisfy the compatibility and equilibrium conditions between separated regions and to carry out the efficient analysis, the rigid link is used. Also the equation of wind and that of structure are arranged in a single matrix equation.

Wind load analysis of Structure for Folding Solar Power System (접이식 태양광 발전 구조물의 풍하중해석)

  • Son, Chang-Woo;Kim, Tae-Kyun;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권8호
    • /
    • pp.1-7
    • /
    • 2018
  • A folding solar power system is a stand-alone system and is a structure with solar panels attached. It consists of supporting parts and folding parts for ease of movement. While the efficiency of solar panels is also important to produce electricity by maximizing the power efficiency of solar panels, the most important thing is structure stability. The folding solar power structure intended to be developed in this study is a collapsible structure that is easy to move and install into systems that can produce electricity from grid to independent. Since these structures are installed outdoors, wind loads, snow cover, etc. In this paper, the wind loads most affected by the folding solar power generation structure were obtained using the MeshFree Finite Element Method. MeshFree is a program that makes it easier for users to interpret by simplifying the mesh tasks required by an existing analysis. The analysis showed that the greater the angle of inclination of the wind to the ground, the greater the wind load. In addition, reliability was ensured by wind load testing.