• Title/Summary/Keyword: Mesh Deformation

Search Result 249, Processing Time 0.031 seconds

Data Augmentation Method for Deep Learning based Medical Image Segmentation Model (딥러닝 기반의 대퇴골 영역 분할을 위한 훈련 데이터 증강 연구)

  • Choi, Gyujin;Shin, Jooyeon;Kyung, Joohyun;Kyung, Minho;Lee, Yunjin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In this study, we modified CT images of femoral head in consideration of anatomically meaningful structure, proposing the method to augment the training data of convolution Neural network for segmentation of femur mesh model. First, the femur mesh model is obtained from the CT image. Then divide the mesh model into meaningful parts by using cluster analysis on geometric characteristic of mesh surface. Finally, transform the segments by using an appropriate mesh deformation algorithm, then create new CT images by warping CT images accordingly. Deep learning models using the data enhancement methods of this study show better image division performance compared to data augmentation methods which have been commonly used, such as geometric conversion or color conversion.

Orbital wall restoring surgery with resorbable mesh plate

  • Joo, Jae Doo;Kang, Dong Hee;Kim, Hyon Surk
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.4
    • /
    • pp.264-269
    • /
    • 2018
  • Background: Orbital resorbable mesh plates are adequate to use for isolated floor and medial wall fractures with an intact bony buttress, but are not recommended to use for large orbital wall fractures that need load bearing support. The author previously reported an orbital wall restoring surgery that restored the orbital floor to its prior position through the transnasal approach and maintained temporary extraorbital support with a balloon in the maxillary sinus. Extraorbital support could reduce the load applied on the orbital implants in orbital wall restoring surgery and the use of resorbable implants was considered appropriate for the author's orbital wall restoring technique. Methods: A retrospective review was conducted of 31 patients with pure unilateral orbital floor fractures between May 2014 and May 2018. The patients underwent transnasal restoration of the orbital floor through insertion of a resorbable mesh plate and maintenance of temporary balloon support. The surgical results were evaluated by the Hertel scale and a comparison of preoperative and postoperative orbital volume ratio (OVR) values. Results: The OVR decreased significantly, by an average of 6.01% (p<0.05) and the preoperative and postoperative Hertel scale measurements decreased by an average of 0.34 mm with statistical significance (p<0.05). No complications such as buckling or sagging of the implant occurred among the 31 patients. Conclusion: The use of resorbable mesh plate in orbital floor restoration surgery is an effective and safe technique that can reduce implant deformation or complications deriving from the residual permanent implant.

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces (이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Kim, Hye-In;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.86-93
    • /
    • 2022
  • Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.

Analysis of Flexible Media Using ALE Finite Element Method (ALE 유한요소법을 이용한 유연매체의 거동해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.247-250
    • /
    • 2007
  • Flexible media such as the paper, the film, etc. are thin, light and very flexible. They behave in geometrically nonlinear. Any of small force makes large deformation. So we must including aerodynamic effect when its behavior is predicted. Thus, it becomes fully coupled fluid-structure interaction(FSI) problem. In FSI problems, where the fluid mesh near the structure undergoes large deformations and becomes unacceptably distorted, which drive the time step to a very small value for explicit calculations, the arbitrary Lagrangian-Eulerian(ALE) methods or rezoning are used to create a new undistorted mesh for the fluid domain, which allows the calculations to continue. In this paper, FE sheet model considering geometric nonlinearity is formulated to simulate the behavior of the flexible media. Aerodynamic force to the media by surrounding air is calculated by solving the incompressible Navier-Stokes equations. Q2Q1(Taylor-Hood) element which means biquadratic for velocity and bilinear for pressure is used for fluid domain. Q2Q1 element satisfies LBB condition and any stabilization technique is not needed. In this paper, cantilevered sheet in the viscous incompressible Navier-Stokes flow is simulated to check the mesh motion and numerical integration scheme, and then falling paper in the air is simulated and the effects of some representative parameters are investigated.

  • PDF

The Study of Skeleton System for Facial Expression Animation (Skeleton System으로 운용되는 얼굴표정 애니메이션에 관한 연구)

  • Oh, Seong-Suk
    • Journal of Korea Game Society
    • /
    • v.8 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • This paper introduces that SSFE(Skeleton System for Facial Expression) to deform facial expressions by rigging of skeletons does same functions with 14 facial muscles based on anatomy. A three dimensional animation tool (MAYA 8.5) is utilized for making the SSFE that presents deformation of mesh models implementing facial expressions around eyes, nose and mouse. The SSFE has a good reusability within diverse human mesh models. The reusability of SSFE can be understood as OSMU(One Source Multi Use) of three dimensional animation production method. It can be a good alternative technique for reducing production budget of animations. It can also be used for three dimensional animation industries such as virtual reality and game.

  • PDF

A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite (열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

Investigating spurious cracking in finite element models for concrete fracture

  • Gustavo Luz Xavier da Costa;Carlos Alberto Caldeira Brant;Magno Teixeira Mota;Rodolfo Giacomim Mendes de Andrade;Eduardo de Moraes Rego Fairbairn;Pierre Rossi
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2023
  • This paper presents an investigation of variables that cause spurious cracking in numerical modeling of concrete fracture. Spurious cracks appear due to the approximate nature of numerical modeling. They overestimate the dissipated energy, leading to divergent results with mesh refinement. This paper is limited to quasi-static loading regime, homogeneous models, cracking as the only nonlinear mode of deformation and cracking only due to tensile loading. Under these conditions, some variables that can be related to spurious cracking are: mesh alignment, ductility, crack band width, structure size, mesh refinement and load increment size. Case studies illustrate the effect of each variable and convergence analyses demonstrate that, after all, load-increment size is the most important variable. Theoretically, a sufficiently small load increment is able to eliminate or at least alleviate the detrimental influence of the other variables. Such load-increment size might be prohibitively small, rendering the simulation unfeasible. Hence, this paper proposes two alternatives. First, it is proposed an algorithm that automatically find such small load increment size automatically, which not necessarily avoid large computations. Then, it is proposed a double simulation technique, in which the crack is forced to propagate through the localization zone.

Finite Element Analysis of a Screw Rolling Process (유한요소법을 이용한 나사전조 공정의 해석)

  • Jang, S.J.;Lee, M.C.;Han, S.S.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.128-131
    • /
    • 2009
  • In this paper, three-dimensional finite element analysis of screw rolling process of a long shaft bolt is conducted by using a rigid-plastic finite element method based metal forming simulator AFDEX 3D. A whole sequence of cold forming processes of a long shaft bolt composed of forging and screw rolling processes is simulated to reveal the mechanism of screw formation. A mesh density control function is applied near the major plastic deformation region to achieve computational efficiency.

  • PDF

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

A Numerical Analysis in Piezoelectric Fan Systems (압전세라믹 냉각팬에 대한 수치해석적 연구)

  • Park, Ji-Ho;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.994-1000
    • /
    • 2011
  • In this study, the piezoelectric fan cooling system is investigated. In order to find the proper geometry and configuration, the numerical model for the flow field and heat transfer investigation is used. A simplified nonlinear deformation model is employed for transient solutions of a piezoelectric fan with the dynamic mesh and user defined function capability. The results show that the cooling is most effective when the length of a piezoelectric fan is 5 cm and the cooling plate is 3 cm. The results can be used to develop a new design method of heat sink for piezoelectric fans.