• Title/Summary/Keyword: Mesh, Segmentation

Search Result 39, Processing Time 0.024 seconds

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

LiDAR Measurement Analysis in Range Domain

  • Sooyong Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.187-195
    • /
    • 2024
  • Light detection and ranging (LiDAR), a widely used sensor in mobile robots and autonomous vehicles, has its most important function as measuring the range of objects in three-dimensional space and generating point clouds. These point clouds consist of the coordinates of each reflection point and can be used for various tasks, such as obstacle detection and environment recognition. However, several processing steps are required, such as three-dimensional modeling, mesh generation, and rendering. Efficient data processing is crucial because LiDAR provides a large number of real-time measurements with high sampling frequencies. Despite the rapid development of controller computational power, simplifying the computational algorithm is still necessary. This paper presents a method for estimating the presence of curbs, humps, and ground tilt using range measurements from a single horizontal or vertical scan instead of point clouds. These features can be obtained by data segmentation based on linearization. The effectiveness of the proposed algorithm was verified by experiments in various environments.

Advanced Liver Segmentation by Using Pixel Ratio in Abdominal CT Image

  • Yoo, Seung-Wha;Cho, Jun-Sik;Noh, Seung-Mo;Shin, Kyung-Suk;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.39-42
    • /
    • 2000
  • In our study, by observing and analyzing normal liver in abdominal CT image, we estimated gray value range and generated binary image. In the binary image, we achieved the number of hole which is located between pixels. Depending on the ratio, we processed the input image to 4 kinds of mesh images to remove the noise part that has the different ratio. With the Union image of 4 kinds of mesh images, we generated the template representing general outline of liver and subtracted from the binary image so the we can represent the organ boundary to be minute. With results of proposed method, processing time is reduced compared with existing method and we compared the result image to manual image of medical specialists.

  • PDF

Voronoi 도형을 이용한 자유곡선의 옵셋팅

  • 정재훈;김광수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.713-718
    • /
    • 1994
  • Voronoi diagrams for closed shapes have many practical applications, ranging from numerical control machining to mesh generation. Shape offset based on Voronoi diagram avoids the topological problems encountered in traditional offsetting algorithms. In this paper, we propose a procedure for generating a Voronoi diagram and an exact offset for planar curve. A planer curve can be defined by free-form curve segements. The procedure consists of three steps : 1) segmentation by minimum curvature, 2) construction of Voronoi diagram, and 2) generation of the exact offset.

  • PDF

Object Analysis on Outdoor Environment Using Multiple Features for Autonomous Navigation Robot (자율주행 로봇을 위한 다중 특징을 이용하여 외부환경에서 물체 분석)

  • Kim, Dae-Nyeon;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.651-662
    • /
    • 2010
  • This paper describes a method to identify objects for autonomous navigation of an outdoor mobile robot. To identify objects, the robot recognizes the object from an image taken by moving robot on outdoor environment. As a beginning, this paper presents the candidates for a segment of region to building of artificial object, sky and trees of natural objects. Then we define their characteristics individually. In the process, we segment the regions of the objects included by preprocessing using multiple features. Multiple features are HSI, line segments, context information, hue co-occurrence matrix, principal components and vanishing point. An analysis of building identifies the geometrical properties of building facet such as wall region, windows and entrance. The building as intersection in vertical and horizontal line segment of vanishing point extracts the mesh. The wall region of building detect by merging the mesh of the neighbor parallelograms that have similar colors. The property estimates the number of story and rooms in the same floors by merging skewed parallelograms of the same color. We accomplish the result of image segmentation using multiple features and the geometrical properties analysis of object through experiments.

Feature Points Selection Using Block-Based Watershed Segmentation and Polygon Approximation (블록기반 워터쉐드 영역분할과 다각형 근사화를 이용한 특징점 추출)

  • 김영덕;백중환
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, we suggest a feature points selection method using block-based watershed segmentation and polygon approximation for preprocessing of MPEG-4 mesh generation. 2D natural image is segmented by 8$\times$8 or 4$\times$4 block classification method and watershed algorithm. As this result, pixels on the watershed lines represent scene's interior feature and this lines are shapes of closed contour. Continuous pixels on the watershed lines are selected out feature points using Polygon approximation and post processing.

  • PDF

3D Clothes Modeling of Virtual Human for Metaverse (메타버스를 위한 가상 휴먼의 3차원 의상 모델링)

  • Kim, Hyun Woo;Kim, Dong Eon;Kim, Yujin;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.638-653
    • /
    • 2022
  • In this paper, we propose the new method of creating 3D virtual-human reflecting the pattern of clothes worn by the person in the high-resolution whole body front image and the body shape data about the person. To get the pattern of clothes, we proceed Instance Segmentation and clothes parsing using Cascade Mask R-CNN. After, we use Pix2Pix to blur the boundaries and estimate the background color and can get UV-Map of 3D clothes mesh proceeding UV-Map base warping. Also, we get the body shape data using SMPL-X and deform the original clothes and body mesh. With UV-Map of clothes and deformed clothes and body mesh, user finally can see the animation of 3D virtual-human reflecting user's appearance by rendering with the state-of-the game engine, i.e. Unreal Engine.

Review of Reverse Design Process for Freeform Envelope Using 3D Scanning (비정형 건축물의 외장재 제작 시공을 위한 3D 스캐닝에 의한 역 설계 프로세스 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.17-18
    • /
    • 2015
  • In manufacturing industry, image scanning technique has made enormous progress in past decades. 3D models have been also very important to continuously monitor the related spatial information for freeform buildings. The process of shape making of 3D scanning is as follows: mesh surface segmentation, NURBS surface generation, and parametric solid model generation. We will review the process and applying process. Especially in the construction industry, 3D data collection by laser scanning has become an high quality 3D models. Therefore, in this research, we have an effort to review construction of reverse design process for freeform envelope using 3D scanning. The technology enables many 3D shape engineering and design parameterization of reverse engineering in the construction site.

  • PDF

Mesh Segmentation Reflecting Global and Local Geometric Characteristics (전역 및 국부 기하 특성을 반영한 메쉬분할)

  • Im, Jeong-Hun;Ha, Jong-Sung;Yoo, Kwan-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06b
    • /
    • pp.167-170
    • /
    • 2007
  • 본 논문에서는 텍스춰매핑, 재메쉬화, 메쉬의 단순화와 모핑 및 압축 등 다양한 분야에 적용되는 메쉬분할 문제를 다룬다. 메쉬분할은 주어진 삼차원 메쉬를 서로 떨어진 집합(disjoint sets)으로 분할하는 것으로서 여러 연구자들에 의해 많은 연구 결과들이 제시되어 왔다. 본 논문에서는 삼차원 메쉬가 가지고 있는 기하학적 특성을 고려하여 메쉬를 분할하는 방법을 제시하고자 한다. 먼저 메쉬의 국부적 기하 특성인 곡률 정보와 전역적 기하 특성인 볼록성을 이용하여 삼차원 메쉬를 구성하는 첨예정점을 추출하였고, 이들간의 거리 정보를 이용하여 이 첨예정점들을 군집화(clustering)하였다. 최종 메쉬분할을 위해 분할된 첨예정점에 속하지 않는 나머지 정점들에 대해 거리 정보를 이용하여 군집화를 수행하였다. 본 논문에서 제안한 메쉬분할 방법을 검증하기 위해 벤치마크로 공개된 여러 메쉬 모델에 대해 실험하여 그 결과를 보여주었다.

  • PDF

3D mesh compression using model segmentation and de-duplications (모델 분할 및 중복성 제거 기법을 이용한 3차원 메쉬 압축 기술)

  • Kim, Sungjei;Jeong, Jinwoo;Yoon, Ju Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.190-191
    • /
    • 2020
  • 본 논문은 모델 분할 기법과 중복성 제거 기법을 통한 대용량 3차원 메쉬 모델의 고속 압축 기술에 관한 내용이다. 대용량 3차원 메쉬 모델의 비실시간 압축은 실시간 스트리밍 응용 시나리오에서 제약점으로 작용하고 있고, 본 논문에서는 인코딩 시간을 줄이기 위해 경량 메쉬 분할 방법을 통해 대용량 메쉬를 여러 개의 작은 메쉬로 분할하고, 각각의 분할된 메쉬를 병렬적으로 인코딩하여 처리 속도를 개선하였다. 또한, 메쉬 모델 내의 같은 기하학적 정보를 가진 중복된 정점들이 존재할 수 있으며, 중복된 정보를 제거하고 제거된 정점과 삼각형 표면 간의 연결 정보를 갱신하는 과정을 통해 메쉬 모델의 기하학적 정보를 유지하면서 압축 성능을 확보하였다.

  • PDF