• Title/Summary/Keyword: Mesenchymal stem cell transplantation

Search Result 75, Processing Time 0.033 seconds

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Sung, Eun-Ah;Lee, Seung Eun;Shin, Nari;Choi, Soon Won;Seo, Yoojin;Kim, Hyung-Sik;Kang, Kyung-Sun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.8.1-8.14
    • /
    • 2018
  • We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking

  • Agrahari, Gaurav;Sah, Shyam Kishor;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.344-349
    • /
    • 2018
  • Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cell-based therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvation-induced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signal-regulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy.

Characteristics and response of mouse bone marrow derived novel low adherent mesenchymal stem cells acquired by quantification of extracellular matrix

  • Zheng, Ri-Cheng;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.351-360
    • /
    • 2014
  • PURPOSE. The aim of present study was to identify characteristic and response of mouse bone marrow (BM) derived low-adherent bone marrow mesenchymal stem cells (BMMSCs) obtained by quantification of extracellular matrix (ECM). MATERIALS AND METHODS. Non-adherent cells acquired by ECM coated dishes were termed low-adherent BMMSCs and these cells were analyzed by in vitro and in vivo methods, including colony forming unit fibroblast (CFU-f), bromodeoxyuridine (BrdU), multi-potential differentiation, flow cytometry and transplantation into nude mouse to measure the bone formation ability of these low-adherent BMMSCs. Titanium (Ti) discs with machined and anodized surfaces were prepared. Adherent and low-adherent BMMSCs were cultured on the Ti discs for testing their proliferation. RESULTS. The amount of CFU-f cells was significantly higher when non-adherent cells were cultured on ECM coated dishes, which was made by 7 days culturing of adherent BMMSCs. Low-adherent BMMSCs had proliferation and differentiation potential as adherent BMMSCs in vitro. The mean amount bone formation of adherent and low-adherent BMMSCs was also investigated in vivo. There was higher cell proliferation appearance in adherent and low-adherent BMMSCs seeded on anodized Ti discs than machined Ti discs by time. CONCLUSION. Low-adherent BMMSCs acquired by ECM from non-adherent cell populations maintained potential characteristic similar to those of the adherent BMMSCs and therefore could be used effectively as adherent BMMSCs in clinic.

T Lymphocyte Subsets and Cytokines in Rats Transplanted with Adipose-Derived Mesenchymal Stem Cells and Acellular Nerve for Repairing the Nerve Defects

  • Jiang, Liang-fu;Chen, Ou;Chu, Ting-gang;Ding, Jian;Yu, Qing
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Objective : The aim of this study was to explore the immunity in rats transplanted with adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve (ACN) for repairing sciatic nerve defects. Methods : ADSCs were isolated from the adipose tissues of Wistar rats. Sprague-Dawley rats were used to establish a sciatic nerve defect model and then divided into four groups, according to the following methods : Group A, allogenic nerve graft; Group B, allograft with ACN; Group C, allograft ADSCs+ACN, and Group D, nerve autograft. Results : At the day before transplantation and 3, 7, 14, and 28 days after transplantation, orbital venous blood of the Sprague-Dawley rats in each group was collected to detect the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets using flow cytometry and to determine the serum concentration of interleukin-2 (IL-2), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and $interferon-{\gamma}$ ($IFN-{\gamma}$) using enzyme-linked immunosorbent assay (ELISA). At each postoperative time point, the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets and the serum concentration of IL-2, $TNF-{\alpha}$, and $IFN-{\gamma}$ in group C were all near to those in group B and group D, in which no statistically significant difference was observed. As compared with group A, the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets and the serum concentration of IL-2, $TNF-{\alpha}$, and $IFN-{\gamma}$ were significantly reduced in group C (p<0.05). Conclusion : The artificial nerve established with ADSCs and ACN has no obvious allograft rejection for repairing rat nerve defects.

Magnetic Resonance Imaging (MRI) of a Hypertrophy of Cartilage and Simultaneous Regeneration of a Damaged Meniscus after Autologous Bone Marrow Aspirates Concentrate (BMAC) Transplantation: a Case Report and Literature Review

  • Bae, Sung Hwan;Kim, Hyun-joo;Oh, Eunsun;Hwang, Jiyoung;Hong, Seong Sook;Hwang, Jung Hwa
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.187-191
    • /
    • 2017
  • Bone marrow aspirates concentrate (BMAC) transplantation is a well-known technique for cartilage regeneration with good clinical outcomes for symptoms in patients with osteoarthritis (OA). Magnetic resonance imaging (MRI) has an important role in evaluating the degree of cartilage repair in cartilage regeneration therapy instead of a second assessment via an arthroscopy. We experienced a case of hypertrophic regeneration of the cartilage and a presumed simultaneous regeneration of the posterior horn of the lateral meniscus after BMAC transplantation for a cartilage defect at the lateral tibial and femoral condyle. This report provides the details of a case of an unusual treatment response after a BMAC transplant. This report is the first of its kind to demonstrate a MR image that displays the simultaneous regeneration of the cartilage and meniscus with a differentiation ability of the mesenchymal stem cell to the desired cell lineage.

Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold

  • Kang, Seung-Hwan;Park, Jun-Beom;Kim, InSoo;Lee, Won;Kim, Heesung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.4
    • /
    • pp.258-267
    • /
    • 2019
  • Purpose: Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. Methods: The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (${\beta}$-tricalcium phosphate/hydroxyapatite [${\beta}-TCP/HA$]) and $1{\times}10^5MSCs$, 2) collagen membrane and $1{\times}10^5MSCs$, 3) ${\beta}-TCP/HA+collagen$ membrane and $1{\times}10^5MSCs$, or 4) ${\beta}-TCP/HA$, a chipped collagen membrane and $1{\times}10^5MSCs$. Cellular viability and the cell migration rate were analyzed. Results: Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). Conclusions: This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.

Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity

  • Sung-Ho Chang;Chung Gyu Park
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.44.1-44.16
    • /
    • 2023
  • Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.

Nanosphere Form of Curcumin Stimulates the Migration of Human Umbilical Cord Blood Derived Mesenchymal Stem Cells

  • Kim, Do-Wan;Kim, Ju Ha;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.221-221
    • /
    • 2020
  • Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases. In the present study, we found the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) during the wound closure. We found that the efficacy of hUCB-MSCs migration induced by CN was 1000-fold higher than that of curcumin powder. CN significantly increased the motility of hUCB-MSCs by activating c-Src, which is responsible for the phosphorylation of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). CN induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhances wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.

  • PDF

Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells

  • Byun, Yu-Kyung;Kim, Kyoung-Hwa;Kim, Su-Hwan;Kim, Young-Sung;Koo, Ki-Tae;Kim, Tai-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.73-80
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of the immunosuppressants FK506 and cyclosporin A (CsA) on the osteogenic differentiation of rat mesenchymal stem cells (MSCs). Methods: The effect of FK506 and CsA on rat MSCs was assessed in vitro. The MTT assay was used to determine the deleterious effect of immunosuppressants on stem cell proliferation at 1, 3, and 7 days. Alkaline phosphatase (ALP) activity was analyzed on days 3, 7, and 14. Alizarin red S staining was done on day 21 to check mineralization nodule formation. Real-time polymerase chain reaction (RT-PCR) was also performed to detect the expressions of bone tissue-specific genes on days 1 and 7. Results: Cell proliferation was promoted more in the FK506 groups than the control or CsA groups on days 3 and 7. The FK506 groups showed increased ALP activity compared to the other groups during the experimental period. The ALP activity of the CsA groups did not differ from the control group in any of the assessments. Mineralization nodule formation was most prominent in the FK506 groups at 21 days. RT-PCR results of the FK506 groups showed that several bone-related genes-osteopontin, osteonectin, and type I collagen (Col-I)-were expressed more than the control in the beginning, but the intensity of expression decreased over time. Runx2 and Dlx5 gene expression were up-regulated on day 7. The effects of 50 nM CsA on osteonectin and Col-I were similar to those of the FK506 groups, but in the 500 nM CsA group, most of the genes were less expressed compared to the control. Conclusions: These results suggest that FK506 enhances the osteoblastic differentiation of rat MSCs. Therefore, FK506 might have a beneficial effect on bone regeneration when immunosuppressants are needed in xenogenic or allogenic stem cell transplantation to treat bone defects.

Pulmonary passage of canine adipose tissue-derived mesenchymal stem cells through intravenous transplantation in mouse model

  • Jaeyeon Kwon;Mu-Young Kim;Soojung Lee;Jeongik Lee;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.36.1-36.15
    • /
    • 2024
  • Importance: The intravenous administration of adipose tissue-derived mesenchymal stem cells (AdMSCs) in veterinary medicine is an attractive treatment option. On the other hand, it can result in severe complications, including pulmonary thromboembolism (PTE). Objective: The present study assessed the occurrence of PTE after the intravenous infusion of canine AdMSCs (cAdMSCs) into experimental animals. Methods: Five-week-old male BALB/c hairless mice were categorized into groups labeled A to G. In the control group (A), fluorescently stained 2×106 cAdMSCs were diluted in 200 µL of suspension and injected into the tail vein as a single bolus. The remaining groups included the following: group B with 5×106 cells, group C with 3×106 cells, group D with 1×106 cells, group E with 1×106 cells injected twice with a one-day interval, group F with 2×106 cells in 100 µL of suspension, and group G with 2×106 cells in 300 µL of suspension. Results: Group D achieved a 100% survival rate, while none of the subjects in groups B and C survived (p = 0.002). Blood tests revealed a tendency for the D-dimer levels to increase as the cell dose increased (p = 0.006). The platelet count was higher in the low cell concentration groups and lower in the high cell concentration groups (p = 0.028). A histological examination revealed PTE in most deceased subjects (96.30%). Conclusions and Relevance: PTE was verified, and various variables were identified as potential contributing factors, including the cell dose, injection frequency, and suspension volume.