• Title/Summary/Keyword: Mesenchymal stem cell (MSC)

Search Result 132, Processing Time 0.021 seconds

Evaluation of Osteoinduction Efficacy of Human Amniotic Membrane (인체 양막의 골형성유도능 평가)

  • Han, Jung-Wook;Seo, Young-Kwon;Park, Jung-Keug;Song, Kye-Yong
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.291-296
    • /
    • 2008
  • Amniotic membrane (AM) has been used in various medical application such as biomaterials and it has a biocompatibility and wound healing effects. In this studies, we made AM sponge that was homogenized with AM and then lyophilized. And osteoinduction efficacy of AM sponge was evaluated with collagen sponge by mesenchymal stem cell culture and implantation in nude mouse. As a result of this study, adhesion and proliferation of MSC cells on AM sponge and collagen sponge were not different, but AM sponge was more superior to collagen sponge for induction of collagen secretion and calcium adhesion in matrix in vivo. Besides, AM sponges were more positive stained than collagen sponge about osteocalcin and osteonectin. As a results of this study, there is possibility of doing that AM could increase osteoinduction.

Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect

  • Ge, Qing;Green, David William;Lee, Dong-Joon;Kim, Hyun-Yi;Piao, Zhengguo;Lee, Jong-Min;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1016-1023
    • /
    • 2018
  • Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to up-regulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.