• 제목/요약/키워드: Mesenchymal stem/stromal cells

검색결과 47건 처리시간 0.026초

Stem cell niche as a prognostic factor in leukemia

  • Lee, Ga-Young;Kim, Jin-A;Oh, Il-Hoan
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.427-428
    • /
    • 2015
  • Despite high interests on microenvironmental regulation of leukemic cells, little is known for bone marrow (BM) niche in leukemia patients. Our recent study on BMs of acute myeloid leukemia (AML) patients showed that the mesenchymal stromal cells (MSCs) are altered during leukemic conditions in a clinical course-dependent manner. Leukemic blasts caused reprogramming of transcriptomes in MSCs and remodeling of niche cross-talk, selectively suppressing normal primitive hematopoietic cells while supporting leukemogenesis and chemo-resistance. Notably, differences in BM stromal remodeling were correlated to heterogeneity in subsequent clinical courses of AML, i.e., low numbers of mesenchymal progenitors at initial diagnosis were correlated to complete remission for 5-8 years, and high contents of mesenchymal progenitor or MSCs correlated to early or late relapse, respectively. Thus, stromal remodeling by leukemic cell is an intrinsic part of leukemogenesis that can contribute to the clonal dominance of leukemic cells over normal hematopoietic cells, and can serve as a biomarker for prediction of prognosis. [BMB Reports 2015; 48(8): 427-428]

Fat grafts enriched with adipose-derived stem cells

  • Hong, Ki Yong
    • 대한두개안면성형외과학회지
    • /
    • 제21권4호
    • /
    • pp.211-218
    • /
    • 2020
  • Autologous fat grafts are widely used in soft-tissue augmentation and reconstruction. To reduce the unpredictability of fat grafts and to improve their long-term survival, cell-assisted lipotransfer (CAL) was introduced. In this alternative method, autologous fat is mixed and grafted with stromal vascular fraction cells or adipose-derived stem/stromal cells (ASCs). In regenerative medicine, ASCs exhibit excellent therapeutic potential and are also simple to harvest. Although the efficacy of CAL has been demonstrated in experimental and clinical research, studies on its safety in terms of oncologic risk have reported inconclusive results. In order to establish CAL as a viable stem cell therapeutic approach, it will be necessary to demonstrate its oncologic safety in basic and clinical studies. Doing so could transform the paradigm of clinical strategy and practice for the treatment of a wide variety of diseases.

Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells

  • Dissanayake, DMAB;Patel, H;Wijesinghe, PS
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제45권2호
    • /
    • pp.75-81
    • /
    • 2018
  • Objective: Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods: Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at $36^{\circ}C$ for 3 more weeks. Results: The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion: Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.

중간엽 줄기세포를 이용한 골재생의 임상적 활용 (Clinical Use of Mesenchymal Stem Cells in Bone Regeneration)

  • 박찬우;임승재;박윤수
    • 대한정형외과학회지
    • /
    • 제54권6호
    • /
    • pp.490-497
    • /
    • 2019
  • 최근 줄기세포에 대한 생물학적 지식의 발전으로 인해 이를 실제 환자의 치료에 적용시키기 위한 다양한 노력들이 이루어지고 있다. 중간엽 줄기세포는 골수 흡인물로부터 처음 발견되었으나 현재는 지방, 피부, 근육, 제대혈 등 다양한 조직으로부터 추출될 수 있는 다능성 기질세포로 이해되고 있다. 그동안 중간엽 줄기세포의 골형성능은 여러 실험 및 동물 연구를 통해 증명되었으며 골결손, 골괴사, 불유합 등의 어려운 임상 상황에서 일부 성공적인 골재생 결과들이 보고되고 있다. 하지만 아직까지 각 질환별 적응증이나 표준화된 적용법이 마련되어 있지 않으며 효능 및 안전성에 대한 객관적 증거가 부족한 상태이다. 중간엽 줄기세포를 이용한 골재생은 앞으로 더욱 확대될 가능성이 높으나 표준적인 치료로 인정받기 위해서는 아직 해결되어야 할 과제들 또한 남아 있다.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제39권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

홍화 추출물이 생쥐 골수 유래 중간엽 줄기세포의 지방분화에 미치는 영향 (Effects of Carthamus Tinctorius Extract on Adipogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stromal Stem Cells)

  • 유성률;신선미
    • 대한한방내과학회지
    • /
    • 제38권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Objective: This study investigated the effect of purified Carthamus tinctorius (C. tinctorius) extracted with a hot water and ethanol method on adipogenic differentiation of mouse bone marrow-derived mesenchymal stromal stem cells (mBMSCs). Methods: The C. tinctorius was extracted using hot water and ethanol. The samples were concentrated by a rotary evaporator and were then dried using a freeze-dryer. The mBMSCs were cultured and maintained in a minimum essential medium eagle alpha (${\alpha}-MEM$) supplemented with 10% FBS and 1% antibiotic antimycotic solution. To induce adipogenic differentiation, the cells were treated with Dulbecco's modified eagle's medium-low glucose (DMEM-LG) containing 1 mg/mL insulin, 1 mM dexamethasone, and 0.5 mM 3-isobutyl-1-methylxanthine. To evaluate the adipogenic differentiation ability, oil-red O staining was performed after adipogenic differentiation for 21 days. The mRNA expression and protein level of adipogenic-related genes were quantified by quantitative real-time PCR and western blotting, respectively. Results: In the results of the MTT assay, no concentrations of C. tinctorius extracts showed toxicity on mBMSCs, so we fixed the treatment concentration of the extract at 100 ng/mL. In oil-red O staining, the water-C. tinctorius extract treatment significantly decreased adipogenic differentiation compared with the control and ethanol extract groups. The water-C. tinctorius extract group in particular showed reduced mRNA and protein expression of Peroxisome proliferator-activated receptor gamma ($Ppar{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/ebp{\alpha}$), which are adipogenic-related transcription factors. Conclusion: These data suggest that extract of C. tinctorius decreased the adipogenic differentiation of mBMSCs, while only water-C. tinctorius extract had an effect on different adipogenesis in mBMSCs. The C. tinctorius will be a useful therapeutic reagent for the prevention of obesity-related diseases such as diabetes, hyperlipidemia, coronary artery disease, and osteoporosis.

Motor Function Recovery after Adipose Tissue Derived Mesenchymal Stem Cell Therapy in Rats with Cerebral Infarction

  • Kim, Chang-Hwan;Kim, Yang-Woon;Jang, Sung-Ho;Chang, Chul-Hoon;Jung, Jae-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권4호
    • /
    • pp.267-272
    • /
    • 2006
  • Objective : There have been recent reports that mesenchymal stromal cells that are harvested from adipose tissue are able to differentiate into neurons. In the present study, we administered adipose tissue derived stem cells in rats with cerebral infarction in order to determine whether those stem cells could enhance the recovery of motor function. Methods : Cerebral infarction was induced by intraluminal occlusion of middle cerebral artery in rats. The adipose tissue-derived mesenchymal stem cells were harvested from inguinal fat pad and proliferated for 2 weeks in DMEM media. Approximately $1{\times}10^6$ cells were injected intravenously or into subdural space of the peri-lesional area. The rotor rod test was performed at preoperative state[before MCA occlusion], and 1, 2, 3, 4, 6, 8 and 10 weeks after the cell therapy. Results : The motor functions that were assessed by rotor rod test at 1 week of the cell therapy were nearly zero among the experimental groups. However, there was apparent motor function recovery after 2 weeks and 4 weeks of cell injection in intravenously treated rats and peri-lesionaly treated rats, respectively, while there was no significant improvement till 8 weeks in vehicle treated rats. Conclusion : These results demonstrate that the adipose derived stem cell treatment improves motor function recovery in rats with cerebral infarction.

HA/TCP 골이식재상에 이식된 지방유래 줄기세포의 골모세포로의 분화 및 골형성에 대한 연구 (BONE REGENERATION WITH ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELL AND HA/TCP)

  • 임재석;권종진;장현석;이의석;정유민;이태형;박정균
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권2호
    • /
    • pp.97-106
    • /
    • 2010
  • Aim of the study: An alternative source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Adipose tissue could be processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). This study was performed to confirm the availability of ATSCs in bone tissue engineering. Materials amp; Methods: In this study, adipose tissue-derived mesenchymal stem cell was extracted from the liposuctioned abdominal fat of 24-old human and cultivated, and the stem cell surface markers of CD 105 and SCF-R were confirmed by immunofluorescent staining. The proliferation of bone marrow mesenchymal stem cell and ATSCs were compared, and evaluated the osteogenic differentiation of ATSCs in a specific osteogenic induction medium. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific BMP-2, ALP, Cbfa-1, Osteopontin and osteocalcin were confirmed by RT-PCR. With differentiation of ATSCs, calcium concentration was assayed, and osteocalcin was evaluated by ELISA (Enzyme-linked immunosorbant assay). The bone formation by 5-week implantation of HA/TCP block loaded with bone marrow mesenchymal stem cells and ATSCs in the subcutaneous pocket of nude mouse was evaluated by histologic analysis. Results: ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. ATSCs could be easily identified through fluorescence microscopy, and bone formation in vivo was confirmed by using ATSC-loaded HA/TCP scaffold. Conclusions: The present results show that ATSCs have an ability to differentiate into osteoblasts and formed bone in vitro and in vivo. So ATSCs may be an ideal source for further experiments on stem cell biology and bone tissue engineering.

Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects

  • Meligy, Fatma Y.;Elgamal, Dalia A.;Abdelzaher, Lobna A.;Khashbah, Maha Y.;El-Mokhtar, Mohamed A.;Sayed, Ayat A.;Refaiy, Abeer M.;Othman, Essam R.
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.322-336
    • /
    • 2021
  • Objective: Endometriosis is a chronic debilitating inflammatory condition characterized by the presence of endometrial tissues outside the uterine cavity. Pelvic soreness and infertility are the usual association. Due to the poor effectiveness of the hormone therapy and the high incidence of recurrence following surgical excision, there is no single effective option for management of endometriosis. Mesenchymal stem cells (MSCs) are multipotent stromal cells studied for their broad immunoregulatory and anti-inflammatory properties; however, their efficiency in endometriosis cases is still a controversial issue. Our study aim was to evaluate whether adipose tissue-derived MSCs (AD-MSCs) could help with endometriosis through their studied anti-inflammatory role. Methods: Female Wistar rats weighting 180 to 250 g were randomly divided into two groups: group 1, endometriosis group; established by transplanting autologous uterine tissue into rats' peritoneal cavities and group 2, stem cell treated group; treated with AD-MSCs on the 5th day after induction of endometriosis. The proliferative activity of the endometriosis lesions was evaluated through Ki67 staining. Quantitative estimation of interferon γ, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-10, and transforming growth factor β expression, as well as immunohistochemical detection of CD68 positive macrophages, were used to assess the inflammatory status. Results: The size and proliferative activity of endometriosis lesions were significantly reduced in the stem cell treated group. Stem cells efficiently mitigated endometriosis associated chronic inflammatory reactions estimated through reduction of CD68 positive macrophages and the expression of the proinflammatory cytokines. Conclusion: Stem cell therapy can be considered a novel remedy in endometriosis possibly through its anti-inflammatory and antiproliferative properties.

Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review

  • Sabrina Moreira Paes;Yasmine Mendes Pupo;Bruno Cavalini Cavenago;Thiago Fonseca-Silva;Carolina Carvalho de Oliveira Santos
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.26.1-26.15
    • /
    • 2021
  • Objectives: The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods: This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results: The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions: The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.