• Title/Summary/Keyword: Merging and branching

Search Result 7, Processing Time 0.021 seconds

An Optimization Method of Spatial Placement for Effective Vehicle Loading (효과적인 차량 선적을 위한 공간 배치의 최적화 기법)

  • Cha, Joo Hyoung;Choi, Jin Seok;Bae, You Su;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.186-191
    • /
    • 2020
  • In this paper, we proposed an optimization technique for efficiently placing vehicles on decks in a vehicle-carrying ship to efficiently handle loading and unloading. For this purpose, we utilized the transformation method of the XML data representing the ship's spatial information, merging and branching algorithm and genetic algorithm, and implemented the function to visualize the optimized vehicle placement results. The techniques of selection, crossover, mutation, and elite preservation, which are used in the conventional genetic algorithms, are used. In particular, the vehicle placement optimization method is proposed by merging and branching the ship space for the vehicle loading. The experimental results show that the proposed merging and branching method is effective for the optimization process that is difficult to optimize with the existing genetic algorithm alone. In addition, visualization results show vehicle layout results in the form of drawings so that experts can easily determine the efficiency of the layout results.

A Multiple Branching Algorithm of Contour Triangulation by Cascading Double Branching Method (이중분기 확장을 통한 등치선 삼각화의 다중분기 알고리즘)

  • Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.123-134
    • /
    • 2000
  • This paper addresses a new triangulation method for constructing surface model from a set of wire-frame contours. The most important problem of contour triangulation is the branching problem, and we provide a new solution for the double branching problem, which occurs frequently in real data. The multiple branching problem is treated as a set of double branchings and an algorithm based on contour merging is developed. Our double branching algorithm is based on partitioning of root contour by Toussiant's polygon triangulation algorithml[14]. Our double branching algorithm produces quite natural surface model even if the branch contours are very complicate in shape. We treat the multiple branching problem as a problem of coarse section sampling in z-direction, and provide a new multiple branching algorithm which iteratively merge a pair of branch contours using imaginary interpolating contours. Our method is a natural and systematic solution for the general branching problem of contour triangulation. The result shows that our method works well even though there are many complicated branches in the object.

  • PDF

EMPS : An Efficient Software Merging Technique for Preserving Semantics (EMPS : 의미를 보존하는 효율적인 소프트웨어 병합)

  • Kim Ji-Sun;Youn Cheong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.223-234
    • /
    • 2006
  • Branching and merging have been being the outstanding methods for SCM in terms of supporting parallel developments. Since well-known commercial merging tools based on textual merging have not detecting semantics conflicts, they can cause semantic errors in the result of merging. Although a lot of researches for detecting semantic conflict and merging up to recently, these researches have been doing individually. Therefore, it is necessary for a research detecting semantic conflict on textual merging and solving it. In this paper, we propose a new method for merging which preserve semantics on textual merging. The method merging two revisions from a source program is as follows : 1) defining changing operations, which include Update, Delete, and Insert operation, per line on two revisions corresponding to the line in source program, 2) detecting textual conflicts and semantic conflict in terms of executional behaviors, 3) solving these conflicts before merging. So, the proposed method can be regarded as a hybrid method that combines a method of textual merging and a behavioral semantic merging.

Hydraulic Characteristics of Branching and Merging of Channels in Regenerative Cooling Passage in Liquid Rocket Combustors (채널의 분기 및 병합이 있는 액체로켓 연소기 재생냉각 유로에서의 수력학적 특성)

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1087-1093
    • /
    • 2008
  • Regenerative cooling passage to guarantee the thermal survivability in high performance rocket engine combustors could have complex configurations of the branching/merging of channels and flow turning, etc. By applying the classical hydraulic coefficients which can be found in the literature according to the flow conditions, hydraulic characteristics in regenerative cooling passages can be obtained effectively through dividing the pressure loss into friction loss and local resistance loss. Satisfactory agreement has been obtained by comparing the present results with experimental measurement of water flow test. In addition, the present results were in good agreement with CFD results when the actual coolant, kerosene was used. Therefore, the application of the present method is expected to be useful to design regeneratively cooled combustors.

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging (메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성)

  • Jang, Yeonggul;Kim, Dong Hwan;Jeon, Byunghwan;Han, Dongjin;Shim, Hackjoon;Chang, Hyuk-jae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2016
  • Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.

Tracking a Selected Target among Multiple Moving Objects (다수의 물체가 이동하는 환경에서 선택된 물체의 추적기법)

  • 김준석;송필재;차형태;홍민철;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.363-363
    • /
    • 2000
  • The conventional algorithms which identify and follow a moving target using a camera located at a fixed position are not appropriate for applying to the cases o( using mobile robots, due to their long processing time. This paper proposes a new tracking algorithm based on the sensing system which uses a line light with a single camera. The algorithm categirizes the motion patterns of a pair of mobile objects into parallel, branching, and merging motion, to decide of which objects the trajectories should be calculated to follow the reference object. Kalman Filter is used to estimate the trajectories of selected objects. The proposed algorithm has shown in the experiments that the mobile robot does not miss the target in most cases.

  • PDF

Application of Three-Dimensional Light Microscopy for Thick Specimen Studies

  • Rhyu, Yeon Seung;Lee, Se Jeong;Kim, Dong Heui;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • The thickness of specimen is an important factor in microscopic researches. Thicker specimen contains more information, but it is difficult to obtain well focused image with precise details due to optical limit of conventional microscope. Recently, a microscope unit that combines improved illumination system, which allows real time three-dimensional (3D) image and automatic z-stack merging software. In this research, we evaluated the usefulness of this unit in observing thick samples; Golgi stained nervous tissue and ground prepared bone, tooth, and non-transparent small sample; zebra fish teeth. Well focused image in thick samples was obtained by processing z-stack images with Panfocal software. A clear feature of neuronal dendrite branching pattern could be taken. 3D features were clearly observed by oblique illumination. Furthermore, 3D array and shape of zebra fish teeth was clearly distinguished. A novel combination of two channel oblique illumination and z-stack imaging process increased depth of field and optimized contrast, which has a potential to be further applied in the field of neuroscience, hard tissue biology, and analysis of small organic structures such as ear ossicles and zebra fish teeth.