• Title/Summary/Keyword: Mercury vapor adsorption

검색결과 5건 처리시간 0.031초

Vapor Phase Mercury Removal by Sulfur Impregnated Activated Carbons and Sulfur Impregnation Protocol

  • Lee, Si-Hyun;Cha, Sun-Young;Park, Yeong-Seong
    • Carbon letters
    • /
    • 제2권1호
    • /
    • pp.37-43
    • /
    • 2001
  • Mercury has been identified as a potential health and environmental hazardous material. Activated carbon adsorption offers promising potential for the control of mercury emissions, and sulfur impregnated (sulfurized) activated carbons has been shown to be an effective sorbent for the removal of vapor phase $Hg{\circ}$ from sources. In this work, vapor phase mercury adsorption by sulfur impregnated activated carbons were investigated. Sulfur impregnated activated carbons were made by variation of impregnation temperature, and the comparison of adsorption characteristics with commercial virgin and sulfurized carbons were made. Factors affecting the adsorption capacity of virgin and sulfurized activated carbons such as pore characteristics, functional groups and sulfur impregnation conditions were discussed. It was found that the sulfur allotropes plays a critical role in adsorption of mercury vapor by sulfurized activated carbons.

  • PDF

A Study of the Optimum Pore Structure for Mercury Vapor Adsorption

  • Kim, Byung-Joo;Bae, Kyong-Min;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1507-1510
    • /
    • 2011
  • In this study, mercury vapor adsorption behaviors for some kinds of porous materials having various pore structures were investigated. The specific surface area and pore structures were studied by BET and D-R plot methods from $N_2$/77 K adsorption isotherms. It was found that the micropore materials (activated carbons, ACs) showed the highest mercury adsorption capacity. In a comparative study of mesoporous materials (SBA-15 and MCM-41), the adsorption capacity of the SBA-15 was higher than that of MCM-41. From the pore structure analysis, it was found that SBA-15 has a higher micropore fraction compared to MCM-41. This result indicates that the mercury vapor adsorptions can be determined by two factors. The first factor is the specific surface area of the adsorbent, and the second is the micropore fraction when the specific surface areas of the adsorbent are similar.

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • 제3권4호
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

증기상 원소수은의 흡착제 개발 및 흡착특성 연구 (Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics)

  • 조남준
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.1-6
    • /
    • 2021
  • 한번 배출된 수은은 소멸되지 않고 자연환경에 축적 및 순환되며 생태계 및 인류보건에 심각한 위해를 준다. 미국에서는 수은의 인위적 배출량의 약 32 %를 차지하는 것으로 알려진 석탄 화력발전소의 배출가스의 증기수은 제거를 위해 황점착 활성탄 사용을 고려하고 있다. 본 연구애서는 석탄 연소설비 배출가스 중의 증기상의 원소수은을 저감하기 위한 고효율의 다공성 수은흡착 소재를 개발하여 소재의 수은 흡착 특성을 조사하였다. 30℃에서 증기수은 흡착능 조사결과 수은흡착용으로 상용화된 활성탄 Darco FGD 대비 실리카 나노소재인 MCM-41의 경우는 약 35 %에 불과하였으나 황을 1.5% 함침한 경우 133 %까지 증가하였고, 폐동 재생공정에서 회수한 용광로 비산재의 경우는 523 %의 효율을 보였다. 또한 30 ℃, 80 ℃ 및 120 ℃의 온도에서 흡착능을 조사한 결과 80 ℃에서 가장 우수한 흡착성능을 나타냈다. MCM-41은 실리카 나노튜브로 구조가 견고해 여러 번 재사용할 수 있을 뿐더러 활성탄을 사용할 경우 우려되는 열점형성으로 인한 화재 가능성이 없어 추가적인 장점까지 지니고 있다.

Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)

  • Mananghaya, Michael;Yu, Dennis;Santos, Gil Nonato;Rodulfo, Emmanuel
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.298-305
    • /
    • 2016
  • In this work, recent progress on graphene/metal oxide composites as advanced materials for $HgCl_2$ and $CO_2$ capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of $HgCl_2$ and water vapor on $CO_2$ adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and $CO_2$ adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large $HgCl_2$ ($0.1-0.4HgCl_2g/g$ sorbent) and $CO_2$ ($0.2-0.6CO_2g/g$ sorbent) uptake capacities. The $HgCl_2$ and $CO_2$ were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for $HgCl_2$ and $CO_2$ capture applications, the functional gives reliable answers compared to available experimental data.