• Title/Summary/Keyword: Mercury emission

Search Result 87, Processing Time 0.021 seconds

Current Management Status of Mercury Emissions from Coal Combustion Facilities: International Regulations, Sampling Methods, and Control Technologies

  • Lee, Sung-Jun;Pudasainee, Deepak;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.1-11
    • /
    • 2008
  • Mercury (Hg), which is mainly emitted from coal-fired power plants, remains one of the most toxic compounds to both humans and ecosystems. Hg pollution is not a local or regional issue, but a global issue. Hg compounds emitted from anthropogenic sources such as coal-fired power plants, incinerators, and boilers, can be transported over long distances. Since the last decade, many European countries, Canada, and especially the United States, have focused on technology to control Hg emissions. Korea has also recently showed an interest in managing Hg pollution from various combustion sources. Previous studies indicate that coal-fired power plants are one of the major sources of Hg in Korea. However, lack of Hg emission data and feasible emission controls have been major obstacles in Hg study. In order to achieve effective Hg control, understanding the characteristics of current Hg sampling methods and control technologies is essential. There is no one proven technology that fits all Hg emission sources, because Hg emission and control efficiency depend on fuel type, configuration of air pollution control devices, flue gas composition, among others. Therefore, a broad knowledge of Hg sampling and control technologies is necessary to select the most suitable method for each Hg-emitting source. In this paper, various Hg sampling methods, including wet chemistry, dry sorbents trap, field, and laboratory demonstrated control technologies, and international regulations, are introduced, with a focus on coal-fired power plants.

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

A Study on occurrence of porosity and leakage of mercury in dental amalgam's inside (치과용 아말감 내부의 수은 유출과 기포의 발생에 관한 연구)

  • Kim, Joo-Won
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.3
    • /
    • pp.531-540
    • /
    • 2010
  • Objectives : In this study, following the cavity restorations with low copper conventional alloy, high copper admixed one and high copper unicompositional one, which are used the most frequently in a clinical setting at the present, to experiment the time-dependent changes of strength, bubbles were examined. Besides, to examine the detrimental effects of mercury contained in dental amalgam, the amount of mercury release was evaluated. Methods : As dental amalgams which were used herein, [BESTALOY], [Hi-Aristaloy 21] and [Sybraloy] were selected for a low-copper conventional amalgam, a high-copper admixed one and a high-copper unicompositional one in the corresponding order. The formation of bubbles and the weight ratio of mercury release were evaluated using a field emission scanning electron microscope (FE-SEM). Thus, the following results were obtained: Results : 1. The time-dependent amount of mercury release reached a statistical significance in three types of alloys, which was shown in such a descending order as [BESTALOY], [Hi-Aristaloy 21] and [Sybraloy]. 2. A low-copper conventional type, BESTALOY is a cutting type and it was found to have an increased formation of fine bubbles. In the remaining two types, [Hi-Aristaloy 21] (a high-copper admixed alloy) and [Sybraloy] (a high-copper unicompositional alloy), the time-dependent changes in the formation of bubbles was negligible. Conclusions : Accordingly, this type of mercury release from amalgam alloy denotes the difference in the weight ratio of total constituents between after 24 hours and after two weeks. But further studies are warranted to examine the amount of mercury release which is detrimental to human bodies. Besides, a low-copper conventional alloy is a cutting type and it was characterized by the abundant formation of bubbles in a time-dependent manner. This implies that the strength of amalgam is impaired, which should be considered in selecting the appropriate amalgam alloy in a clinical setting.

Mercury Fluxes from the Nan-Ji-Do Area of Seoul -Application of Micrometerorological Methods (미기상학적 기법을 응용한 난지도지역이 수은교환율 측정연구)

  • 김민영;김기현;이강웅;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.585-594
    • /
    • 2000
  • Through an application of Micrometerorological methods, we conducted measurements of Hg fluxes from Nan-Ji-Do which is well known as one of the major local areal sources in Seoul metropolitan area during Match/April of 2000. In the course of our study, we determined the concentration gradients of total gaseous Hg(between 20 and 2000 cm heights) and combined these data with Micrometerorological components to derive is fluxes. It turned out that emission from and dry deposition to soil surfaces occurred at the ratio of 72:27 from a total of 271 hourly measurements. The validity of measured concentration gradients( or resulting fluxes) was evaluated in terms of percent gradient. Accordingly, about more than 95% of gradient data derived were statistically significant. The mean fluxes of Hg across soil-air interface, when computed using the concentrations gradients and relevant parameters, were found at 253(during emission) and -846ng/$m^2$/h(during dry deposition) The occurrences of abnormalously high exchange rates appear to be the combined effects of enormously high gradient values and high transfer coefficients. While the emissions of Hg occurred constantly during the whole study periods, the occurrences of dry deposition events were observed most intensively during very limited time periods(3/29 and 4/3). The results of our study cleary indicated that the studied area is a strong local areal source, while exhibiting great potential as a major sink simultaneously.

  • PDF

Emission Characteristics of Mercury and Heavy Metals from Coal and Waste Fuels (석탄과 폐기물 연료의 수은 및 중금속 배출 특성)

  • Ahmad, Tanveer;Park, Min;Keel, Sangin;Yun, Jinhan;Park, Jeong Min;Lee, Sang-Sup.
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • Waste can be utilized as secondary or alternative fuel. Solid recovered fuel (SRF) and dried sewage sludge were combusted to investigate heavy metal emissions from their combusiton in this study. Content of copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), lead (Pb), arsenic (As) and mercury (Hg) of coal, SRF and dried sewage sludge were determined, respectively. Concentrations of these heavy metals in the combustion flue gas were also determined. As a result, emissions of gas-phase Cu, Cr, Cd, Ni, Zn, Pb and As compounds were found to be little. However, a significant amount of gas-phase Hg was emitted from combustion of coal, SRF and dried sewage sludge. While SRF showed a high mercury oxidation percentage in its combustion flue gas, dried sewage sludge showed a high level of gaseous mercury emission.

Preliminary Measurements of Mercury Exchange Rates Across the Soil-Air Boundary in a Residential Area of Seoul (토양-대기의 수은 교환작용 -서울시 주거지역에 대한 예비측정-)

  • 김기현;김민영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • To examine various aspects of Hg exchange processes, we measured Hg$^{\circ}$concentration gradients over soil surfaces in a residential area of Seoul during Sept. 1997. From these measurements, we found that Hg$^{\circ}$concentrations in lower(20 cm) and upper(200 cm) levels varied in the range of 3.15~14.38 (5.30$\pm$1.88: N=236) and 2.07~15.10ng/m$^3$(4.06$\pm$1.69: N=236), respectively. When our data were divided into emission and dry deposition, emission of Hg$^{\circ}$was overwhelmingly dominant (up to 98% in frequency) over dry deposition. The concentration gradients for emission and deposition events were 1.29$\pm$0.86(N=231) and -1.0$\pm$1.27ng/m$^3$(N=5), respectively. The observation of excessively high concentrations in both levels and development of strong gradients suggest that our study site be greatly affected by certain pollution sources of mercury. In face, those data were quite comparable to that had previously been observed from highly contaminated soil environs of Tennessee, USA. To provide some insights into the processes governing the Hg$^{\circ}$exchange processes, we have conducted correlation analyses between Hg$^{\circ}$data and other concurrently determined meteorological plus chemical data. In general, Hg$^{\circ}$concentrations of both levels exhibited similarly the existence of strong correlations with parameters like windspeed, temperature, and relative humidity. Although its concentration gradient data showed similarly strong correlations with meteorological parameters, they showed somewhat unique patterns in that their correlations with Hg$^{\circ}$concentration were noticeably stronger for the lower level than the upper level. To provide rough estimates of Hg$^{\circ}$fluxes in this study, we computed its flux using our gradient data and the predicted K values from previous studies. According to this approach, Hg$^{\circ}$emissions were generally in the range of 103$\pm$80(N=231), while its depositions, being scarcely found, were on the similar magnitude of -92$\pm$128ng/m$^2$/hr(N=5). The findings of excessive emission of Hg$^{\circ}$in residential area of Korea suggests that contamination of mercury be a significant process and hence be dealt more seriously.

  • PDF

Release of Airborne Mercury from Major Waste Incineration Systems in Korea (국내 주요 쓰레기 소각시설로부터 발생하는 수은의 대기 배출량에 관한 연구)

  • 김기현;송동웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.593-596
    • /
    • 1996
  • The encironmental consequences of airborne mercury (Hg) release from waste incineration system are wellperceived. To provide some insights into those phenomena, we have assessed annual emission rates of Hg for several major incineration systems in Korea following the procedures developed abroad. The results of our computation, derived on the basis of dividing the whole amounts of annually incinerated wastes into municipal solid Wastes (MSW), and medical solid wastes (MDW), indicate that the extent of Hg release may be significant nationwide, possibly approaching a few tonnes of Hg per year basis. Knowing that the airborne transport and the resulting deposition of Hg can exert serious pollutions to the aquatic ecosystems, of particular fisheries, we are obliged to establish a stringent measure to confine the amount of Hg released via incineration.

  • PDF