• Title/Summary/Keyword: Mention detection

Search Result 23, Processing Time 0.021 seconds

Mention Detection Using Pointer Networks for Coreference Resolution

  • Park, Cheoneum;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.652-661
    • /
    • 2017
  • A mention has a noun or noun phrase as its head and constructs a chunk that defines any meaning, including a modifier. Mention detection refers to the extraction of mentions from a document. In mentions, coreference resolution refers to determining any mentions that have the same meaning. Pointer networks, which are models based on a recurrent neural network encoder-decoder, outputs a list of elements corresponding to an input sequence. In this paper, we propose mention detection using pointer networks. This approach can solve the problem of overlapped mention detection, which cannot be solved by a sequence labeling approach. The experimental results show that the performance of the proposed mention detection approach is F1 of 80.75%, which is 8% higher than rule-based mention detection, and the performance of the coreference resolution has a CoNLL F1 of 56.67% (mention boundary), which is 7.68% higher than coreference resolution using rule-based mention detection.

Mention Detection with Pointer Networks (포인터 네트워크를 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.774-781
    • /
    • 2017
  • Mention detection systems use nouns or noun phrases as a head and construct a chunk of text that defines any meaning, including a modifier. The term "mention detection" relates to the extraction of mentions in a document. In the mentions, a coreference resolution pertains to finding out if various mentions have the same meaning to each other. A pointer network is a model based on a recurrent neural network (RNN) encoder-decoder, and outputs a list of elements that correspond to input sequence. In this paper, we propose the use of mention detection using pointer networks. Our proposed model can solve the problem of overlapped mention detection, an issue that could not be solved by sequence labeling when applying the pointer network to the mention detection. As a result of this experiment, performance of the proposed mention detection model showed an F1 of 80.07%, a 7.65%p higher than rule-based mention detection; a co-reference resolution performance using this mention detection model showed a CoNLL F1 of 52.67% (mention boundary), and a CoNLL F1 of 60.11% (head boundary) that is high, 7.68%p, or 1.5%p more than coreference resolution using rule-based mention detection.

Mention Detection using Bidirectional LSTM-CRF Model (Bidirectional LSTM-CRF 모델을 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

Neural collective entity linking using Gated Graph Attention Networks (Gated Graph Attention Network에 기반한 뉴럴 집합적 개체 연결)

  • Hong, Seung-Yean;Na, Seung-Hoon;Kim, Hyun-Ho;Kim, Seon-Hoon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.20-23
    • /
    • 2020
  • 개체 연결이란 문서에서 등장한 멘션(Mention)들을 지식 기반(Knowledge Base)상의 하나의 개체에 연결하는 문제를 말한다. 개체 연결은 개체를 찾는 멘션 탐지(mention detection)과정과 인식된 멘션에 대해 중의성을 해결하여 하나의 개체를 찾는 개체 중의성 해결(Entity disambiguation)과정으로 구성된다. 본 논문에서는 개체 정보를 강화하기 위해 wikipedia2vec정보를 결합하여 Entity 정보를 강화하고 문장 내에 모든 개체 정보를 활용하기 위해 집합적 개체를 정의하고 그래프 구조를 표현하기 위해 GNN을 활용하여 기존보다 높은 성능을 이끌어내었다.

  • PDF

GRAVITATIONAL WAVES: SOURCES AND DETECTORS

  • DHURANDHAR S. V.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.273-276
    • /
    • 1996
  • The world wide efforts for detecting gravitational waves, the detectors in vogue and the expected astrophysical sources of gravitational waves will be discussed. Ground based detectors especially, the resonant bar detectors and laser interferometers will be described with a brief mention of the space based detector (the LISA project). Astrophysical sources of gravitational waves such as coalescing binaries, supernovae, pulsars/ rotating neutron stars, stochastic background will be discussed in the context of detection.

  • PDF

Mention Detection using Pointer Networks (포인터 네트워크를 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.152-156
    • /
    • 2016
  • 멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.

  • PDF

Mention Detection using Pointer Networks (포인터 네트워크를 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.152-156
    • /
    • 2016
  • 멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.

  • PDF

Semantic-specific Adapter memory network for Mention detection entity linking (시멘틱 특화 Adapter 메모리 네트워크에 기반한 멘션 추출 및 개체 연결)

  • Lee, Jong-Hyeon;Na, Seung-Hoon;Kim, Hyun-Ho;Kim, Seon-Hoon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.233-236
    • /
    • 2020
  • 개체 연결 태스크는 문장 내에 등장하는 멘션(Mention)들을 위키피디아(Wikipedia)와 같은 지식 베이스 상의 실제 개체에 연결하는 태스크이다. 본 논문에서는 각 멘션을 시멘틱(Semantic)으로 분류하여 각 시멘틱별 추가 학습을 진행할 수 있는 Adapter Memory Network 모델을 제안한다. 이는 각 시멘틱 별 학습을 하나의 통합된 과정으로 진행하도록 하는 모델이며, 본 논문에서는 Adapter Memory Network 모델을 통해 기존 개체 연결 태스크에서 높은 성능을 보이는 NIL 멘션 탐지와 개체 연결의 통합 모델의 성능을 향상시켰음을 보인다.

  • PDF

Recent developments of constructing adjacency matrix in network analysis

  • Hong, Younghee;Kim, Choongrak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1107-1116
    • /
    • 2014
  • In this paper, we review recent developments in network analysis using the graph theory, and introduce ongoing research area with relevant theoretical results. In specific, we introduce basic notations in graph, and conditional and marginal approach in constructing the adjacency matrix. Also, we introduce the Marcenko-Pastur law, the Tracy-Widom law, the white Wishart distribution, and the spiked distribution. Finally, we mention the relationship between degrees and eigenvalues for the detection of hubs in a network.

A Recording System For Nuclear Radation Detection by Means Of Circular Radial Deflection (원형방사상편향에 의한 방사능계측용 기록장치)

  • 이희용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 1966
  • In this article, a recording system for nuclear radiation detection by means of circular radial deflection as an instrument and its applications are described. In the electronic circuit of the instrument, the linearity of a deflected pulse on a circular sweep is especially contribed by employing a multiplying circuit, not to mention the one of a circular time base itself. A sequence of random pulses was recorded on a circular sweep of the CRT screen by means of one cycle unblanking due to a logic circuit. It seems that the intrument is suitable for measuring a decay curve of a short-lived nuclide and its pulse spectrum

  • PDF