• 제목/요약/키워드: Menter SST Turbulent Model

검색결과 6건 처리시간 0.022초

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.

Cavity를 이용한 초음속 연소기 내의 혼합특성 (Mixing Characteristics in Supersonic Combustor with a Cavity)

  • 오주영;배영우;김기수;전영진;이재우;변영환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.359-363
    • /
    • 2005
  • 스크램제트 엔진은 대기중의 공기를 흡입하여 연소실에서 초음속으로 연소하는 방식으로 짧은 시간 동안 연료와 공기가 혼합하고 연소되어야하는 특징이 있다. 연료와 공기 혼합을 증대하는 방법은 여러 가지가 제시되었다. 이중 자유류 마하수 2.5의 단일분사 방법에서의 cavity를 이용한 혼합증대 특성을 알아보기 위해 수치해석을 수행하였다. 수치해석은 상용코드인 CFD-Fastran의 3차원 Navier-Stokes 방정식과 Menter SST(Shear Stress Transport) 난류모델을 적용하였다. cavity 뒤쪽 0.5 cm 떨어진 곳에 지름 0.1cm의 Jet 분사구를 통해 수직분사를 시켜 cavity의 유무에 따른 혼합특성을 살펴보았고, cavity에 대한 영향을 알아보기 위해 $3\times2\times1\;cm$ 크기의 cavity를 사용했다. 계산된 결과는 동일조건의 실험으로 검증하였고 이를 통해 cavity에 의한 혼합증대 특성을 확인할 수 있었다.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제10권6호
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

Performance predictions and acoustic analysis of the HVAB rotor in hover

  • Mali, Hajar;Benmansour, Kawtar;Elsayed, Omer;Qaissi, Khaoula
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.319-333
    • /
    • 2022
  • This work presents a numerical investigation of the aerodynamics and aero acoustics of the HVAB rotor in hover conditions. Two fully turbulent models are employed, the one-equation Spalart-Allmaras model and the two-equation k-ω SST model. Transition effects are investigated as well using the Langtry-Menter γ-Re θt transition transport model. The noise generation and propagation are being investigated using the Ffows-Williams Hawking model for far-field noise and the broadband model for near-field noise. Comparisons with other numerical solvers and with the PSP rotor test data are presented. The results are presented in terms of thrust and power coefficients, the figure of merit, surface pressure distribution, and Sound pressure level. Velocity, pressure, and vortex structures generated by the rotor are also shown in this work. In addition, this work investigates the contribution of different blade regions to the overall noise levels and emphasizes the importance of considering specific areas for future improvements.

가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사 (NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD)

  • 이형로;유일용;곽인근;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

3차원 Cavity 크기 변화에 의한 공기-연료 혼합특성의 수치적 해석 연구 (The Numerical Analysis Study about the Air-Fuel Mixing Characteristics by the Change on the 3D Cavity Size)

  • 서형석;전영진;변영환;이재우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.93-98
    • /
    • 2007
  • 스크램제트의 연소실 내부로 유입되는 공기의 속도는 초음속으로 체류 시간은 수 ms로 매우 짧다. 이 짧은 시간 안에 연료분사, 공기-연료 혼합, 연소과정이 모두 이루어져야 한다. 공기와 연료의 혼합을 증대하는 방법은 여러 가지가 제시되었다. 이중 자유류 마하수 2.5의 단일 수직 분사 방법에서의 Cavity를 이용한 혼합 특성올 알아보기 위해 수치해석을 수행하였다. 사용된 코드는 동일조건의 실험결과와 비교하여 검증하였고 이를 통해 Cavity의 크기에 의한 혼합증대를 확인할 수 있었다.

  • PDF