가뭄은 가장 심각한 기상 재해 중 하나로 농업 생산, 사회경제 등 다양한 분야에 영향을 미친다. 국내의 경우 광주·전남지역이 1990년대 이후 30년 만에 제한 급수 위기에 처하는 역대 최악의 가뭄으로 지역민들은 심각한 피해가 발생하였다. 유럽의 경우 2022년 당시 500년 만에 찾아온 가뭄으로 인해 3분의 2에 해당하는 지역이 피해를 입었으며, 미국 서부 지역은 2000년부터 2021년까지 1200년 만에 가장 극심한 대가뭄을 겪은 것으로 나타났다. 지구온난화에 따른 기후변화로 인해 가뭄의 빈도와 강도가 증가함에 따라 피해도 커질 것으로 예상된다. 가뭄의 부정적인 영향으로 인해 정확하고 신뢰할 수 있는 가뭄 예측 기술이 필요하다. 본 연구에서는 가뭄예측을 위한 입력변수로서 GPM IMERG (The Integrated Multi-satellitE Retrievals for GPM) 강수량 자료와 NOAA에서 제공하는 8가지 북반구 대기패턴 자료 간의 상관성을 분석하였다. 입력변수 간의 상관성과 중장기 가뭄 예측을 위하여 딥러닝 모델 중 시계열 데이터에서 높은 예측 성능을 보이는 LSTM(Long Short Term-Memory)을 적용하여 가뭄을 예측하고자 한다.
본 연구에서는 코로나 바이러스 감염증은 음성만으로 빠르게 진단하는 효율적인 방법을 제안하였다. 기존의 딥러닝 기반 방법들의 연산시간과 대용량 학습자료 요구조건을 완화하기 위해서 Separable Transformer(SepTr)의 구조를 개선하여 파라미터의 수를 대폭 감소시키고 빠른 진단을 가능하게 하는 새로운 Strided Convolution Separable Transformer(SC-SepTr)를 제안하였다. 공개 음향 데이터인 Coswara에 대하여 실험을 수행한 결과 제안된 방법은 상대적으로 소규모의 학습자료에 대해서도 Area Under the Curve(AUC) 성능을 보장하면서도 신속하게 진단을 수행할 수 있음을 보였다.
Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
ETRI Journal
/
제45권4호
/
pp.650-665
/
2023
A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.
The purpose of this study was to investigate brain activation pattern and functional connectivity network during experimental design on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain and SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out experimental design. The network model was consisting of six nodes (ROIs) and its six connections. These results suggested the notion that the activation and connections of these regions mean that experimental design process couldn't succeed just a memory retrieval process. These results enable the scientific experimental design process to be examined from the cognitive neuroscience perspective, and may be used as a basis for developing a teaching-learning program for scientific experimental design such as brain-based science education curriculum.
A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.
In nuclear power plants, reactor coolant leakage can occur due to various reasons. Early detection of leaks is crucial for maintaining the safety of nuclear power plants. Currently, a detection system is being developed in Korea to identify reactor coolant system (RCS) leakage of less than 0.5 gpm. Typically, RCS leaks are detected by monitoring temperature, humidity, and radioactivity in the containment, and a water level in the sump. However, detecting small leaks proves challenging because the resulting changes in the containment humidity and temperature, and the sump water level are minimal. To address these issues and improve leak detection speed, it is necessary to quantify the leaks and develop an artificial intelligence-based leak detection system. In this study, we employed bidirectional long short-term memory, which are types of neural networks used in artificial intelligence, to predict the relative humidity in the leakage area for leak quantification. Additionally, an optimization technique was implemented to reduce learning time and enhance prediction performance. Through evaluation of the developed artificial intelligence model's prediction accuracy, we expect it to be valuable for future leak detection systems by accurately predicting the relative humidity in a leakage area.
실시간 시스템은 시스템이 적시성을 보장하는지 파악하기 위해 실시간 감시기법을 이용한다. 일반적으로 실시간 감시는 실시간 시스템의 현재 동작상태를 파악하는데 중점을 두는 기법이다. 그러나 실시간 시스템의 안정적인 수행을 지원하기 위해서는, 현재 상태를 파악하는 것뿐 아니라, 실시간 시스템 및 시스템상에서 동작하는 실시간 프로세스들의 수행도 예측할 수 있어야 한다. 그러나 기존 예측모델을 실시간 감시기법에 적용하기에는 몇 가지 한계가 있다. 첫째, 예측기능은 실시간 프로세스가 종료한 시점에서 정적인 분석을 통해 수행된다. 둘째, 예측을 위해 사전 기초 통계분석이 필요하다. 셋째, 예측을 위한 이전확률 및 클러스터 정보가 현재 시점을 정확하게 반영하지 못한다. 본 논문에서는 이러한 문제점들을 해결하고 실시간 감시기법에 적용할 수 있는 학습 기반의 수행 예측모델을 제안한다. 이 모델은 학습기법을 통해 불필요한 전처리과정을 없애고, 현시점의 데이터를 이용해, 보다 정확한 실시간 프로세스의 수행 예측이 가능하도록 한다. 또한 이 모델은 실시간 프로세스 수행 시간의 증가율 분석을 통해 다단계 예측을 지원하며, 무엇보다 실시간 프로세스가 실행되는 동안 예측이 가능한 동적 예측을 지원하도록 설계하였다. 실험 결과를 통해 훈련집합의 크기가 10 이상이면 80% 이상의 판단 정확도를 보이며, 다단계 예측의 경우, 훈련집합의 크기 이상의 수행 횟수를 넘으면 다단계 예측의 예측 차는 최소화되는 것으로 나타났다. 본 논문에서 제안한 예측모델은 가장 단순한 학습 알고리즘을 적용했다는 점과, CPU, 메모리, 입출력 데이터를 다루는 다차원 자원공간 모델을 고려하지 못한 한계가 있어 향후에 관련 연구가 요구된다. 본 논문에서 제안하는 학습기반 수행 예측모델은 실시간 감시 및 제어를 필요로 하는 분야 및 응용 분야에 적용할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권7호
/
pp.2304-2320
/
2021
Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.
딥러닝을 사용한 예측 방법은 동일한 예측 모델과 파라미터를 사용한다 하더라도 데이터셋의 특성에 따라 결과가 일정하지 않다. 예를 들면, 데이터셋 A에 최적화된 예측 모델 X를 다른 특성을 가진 데이터셋 B에 적용하면 데이터셋 A와 같이 좋은 예측 결과를 기대하기 어렵다. 따라서 높은 정확도를 갖는 예측 모델을 구현하기 위해서는 데이터셋의 성격을 고려하여 예측 모델을 최적화하는 것이 필요하다. 본 논문에서는 하루 대학 캠퍼스 전력사용량을 1시간 단위로 예측하기 위해 데이터셋의 특성이 고려된 예측 모델이 도출되는 일련의 방법을 단계적으로 제시한다. 데이터 전처리 과정을 시작으로, 이상치 제거와 데이터셋 분류 과정 그리고 합성곱 신경망과 장기-단기 기억 신경망이 결합된 알고리즘(CNN-LSTM: Convolutional Neural Networks-Long Short-Term Memory Networks) 기반 하이퍼파라미터 튜닝 과정을 소개한다. 본 논문에서 제안하는 예측 모델은, 각 시간별 24개 포인트에서 2%의 평균 절대비율 오차(MAPE: Mean Absolute Percentage Error)를 보인다. 단순히 예측 알고리즘만을 적용한 모델과는 달리, 단계적 방법을 통해 최적화된 예측 모델을 사용하여 단일 전력 입력 변수만을 사용해서 높은 예측 정확도를 도출한다. 이 예측 모델은 모바일 에너지관리시스템(Energy Management System: EMS) 어플리케이션에 적용되어 관리자나 소비자에게 최적의 전력사용 방안을 제시할 수 있으며 전력 사용 효율 개선에 크게 기여할 것으로 기대된다.
SD계 흰쥐를 사용하여 motor activity 실험에서 동물들의 자발적인 운동성을 측정한 결과, 주어진 시간 내 움직인 시간과 움직인 거리에는 n-3 지방산이 적절히 함유된 식이군 (Adq group)과 DHA가 첨가된 식이군(Adq+DHA group)간에 유의적 차이를 관찰할 수가 없었다. 학습효과 실험에서 n-3 지방산이 적절히 함유된 식이군 (Adq group)의 경우 목적 플랫트폼까지 걸리는 시간이 DHA 첨가 식이군(Adq+DHA group)에 비하여 다소 길었으나 유의적 차이는 관찰할 수가 없었다. 수영 속도(swimming speed)에서 DHA 첨가 식이군(Adq+DHA group)의 경우, n-3 지방산이 적절히 함유된 식이군 (Adq group)에 비해 유의적으로 빨랐으나 수영 풀에서 움직인 거리 (swimming distance)에는 두 식이군 간의 유의적 차이가 없었다. 두 식이군의 흰쥐들이 수영한 시간(swimming time)과 쉬고 있는 시간(resting time)의 경우, 쉬는 시간에는 유의적 차이가 없었으나 수영 시간 또한 n-3 지방산이 적절이 함유된 식이(Adq group)로 사육된 쥐가 DHA가 첨가된 식이로 사육된 쥐(Adq+DHA group)보다 수영한 시간이 길었으나 여기서도 유의적 차이는 없었다. 기억력 테스트에서 n-3 지방산이 적절히 함유된 식이군(Adq group) 및 DHA가 첨가된 식이군(Adq+DHA group) 모두는 목적 플랫트폼이 있었던 A 지역에 대한 기억이 우수하여 다른 지역들인 B, C, D를 지나가는 횟수보다 유의적으로 많았음을 관찰하였다(p<0.05). 이상의 결과로부터 임신에서부터 성인이 될 때까지 n-3 지방산이 적절히 함유된 식이로 사육된 쥐와 비교할 때 DHA가 첨가된 식이로 사육된 흰쥐가 Morris water maze를 이용한 공간기억력 실험에서 다소 우수한 기억 학습효과를 나타내었으나 유의적 차이는 없었음을 관찰 할 수가 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.