• Title/Summary/Keyword: Memory management

Search Result 1,072, Processing Time 0.036 seconds

Design and Implementation of SDR-based Multi-Constellation Multi-Frequency Real-Time A-GNSS Receiver Utilizing GPGPU

  • Yoo, Won Jae;Kim, Lawoo;Lee, Yu Dam;Lee, Taek Geun;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.315-333
    • /
    • 2021
  • Due to the Global Navigation Satellite System (GNSS) modernization, recently launched GNSS satellites transmit signals at various frequency bands such as L1, L2 and L5. Considering the Korean Positioning System (KPS) signal and other GNSS augmentation signals in the future, there is a high probability of applying more complex communication techniques to the new GNSS signals. For the reason, GNSS receivers based on flexible Software Defined Radio (SDR) concept needs to be developed to evaluate various experimental communication techniques by accessing each signal processing module in detail. This paper proposes a novel SDR-based A-GNSS receiver capable of processing multi-GNSS/RNSS signals at multi-frequency bands. Due to the modular structure, the proposed receiver has high flexibility and expandability. For real-time implementation, A-GNSS server software is designed to provide immediate delivery of satellite ephemeris data on demand. Due to the sampling bandwidth limitation of RF front-ends, multiple SDRs are considered to process the multi-GNSS/RNSS multi-frequency signals simultaneously. To avoid the overflow problem of sampled RF data, an efficient memory buffer management strategy was considered. To collect and process the multi-GNSS/RNSS multi-frequency signals in real-time, the proposed SDR A-GNSS receiver utilizes multiple threads implemented on a CPU and multiple NVIDIA CUDA GPGPUs for parallel processing. To evaluate the performance of the proposed SDR A-GNSS receiver, several experiments were performed with field collected data. By the experiments, it was shown that A-GNSS requirements can be satisfied sufficiently utilizing only milliseconds samples. The continuous signal tracking performance was also confirmed with the hundreds of milliseconds data for multi-GNSS/RNSS multi-frequency signals and with the ten-seconds data for multi-GNSS/RNSS single-frequency signals.

DDoS Defense using Address Prefix-based Priority Service (Address Prefix에 기반한 우선 순위 서비스를 이용한 DDoS 방어)

  • Jin, Jinghe;Lee, Tai-Jin;Nam, Seung-Yeob
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.207-217
    • /
    • 2009
  • We propose a two-stage Distributed Denial of Service (DDoS) defense system, which can protect a given subnet by serving existing flows and new flows with a different priority based on IP history information. Denial of Service (DoS) usually occurs when the resource of a network node or link is limited and the demand of the users for that resource exceeds the capacity. The objective of the proposed defense system is to provide continued service to existing flows even in the presence of DDoS attacks. The proposed scheme can protect existing connections effectively with a smaller memory size by reducing the monitored IP address set through sampling and per-prefix history management. We evaluate the performance of the proposed scheme through simulation.

Futures Price Prediction based on News Articles using LDA and LSTM (LDA와 LSTM를 응용한 뉴스 기사 기반 선물가격 예측)

  • Jin-Hyeon Joo;Keun-Deok Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.167-173
    • /
    • 2023
  • As research has been published to predict future data using regression analysis or artificial intelligence as a method of analyzing economic indicators. In this study, we designed a system that predicts prospective futures prices using artificial intelligence that utilizes topic probability data obtained from past news articles using topic modeling. Topic probability distribution data for each news article were obtained using the Latent Dirichlet Allocation (LDA) method that can extract the topic of a document from past news articles via unsupervised learning. Further, the topic probability distribution data were used as the input for a Long Short-Term Memory (LSTM) network, a derivative of Recurrent Neural Networks (RNN) in artificial intelligence, in order to predict prospective futures prices. The method proposed in this study was able to predict the trend of futures prices. Later, this method will also be able to predict the trend of prices for derivative products like options. However, because statistical errors occurred for certain data; further research is required to improve accuracy.

Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models (순환신경망 모델을 활용한 팔당호의 단기 수질 예측)

  • Jiwoo Han;Yong-Chul Cho;Soyoung Lee;Sanghun Kim;Taegu Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation

  • Young-Dan Cho;Kyoung-Hwa Kim;Yong-Moo Lee;Young Ku;Yang-Jo Seol
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.437-454
    • /
    • 2022
  • Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.

Economic Analysis on the Maintenance Management of Riparian Facilities against Flood Damage (침수피해를 고려한 하천이용시설 유지관리의 경제성 분석)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Sang Eun;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.198-198
    • /
    • 2021
  • 최근 자연적, 사회적, 정책적 관점에서 하천관리의 중요성이 증대되면서 국가하천 정비를 통한 하천시설 관리의 책임이 증대되고 있다. 국가하천 5대강 본류의 친수지구 이용도 변화를 살펴보면 2015년에 비해 2019년에 면적당 이용객 수가 630,813(명/km2)이 증가하였음을 알 수 있었고(국토교통부, 2020) 본 연구에서는 이용자 수 증가율이 높은 편인 한강 내 하천이용시설을 대상으로 선정하여 해당 지역을 기계학습 기반의 수위예측 알고리즘에 적용하였다. 하천이용시설은 하천이용자가 편리하게 하천을 이용하기 위하여 설치한 시설로 공원시설(강서, 난지, 양화, 망원, 여의도, 이촌, 반포, 잠원, 뚝섬, 잠실, 광나루, 구리)을 위주로 분석하였다. 해당 시설의 침수피해를 고려하기 위해 시계열 자료에 특화된 LSTM(Long Short-term Memory)기법을 활용하여 수위예측 알고리즘을 개발하였고 이를 통해 도출된 홍수 예보로 재난을 대비하고 시설물을 체계적으로 관리하는 유지관리의 효과를 분석하고자 하였다. 입력 자료(input data)는 수위 (EL.m), 팔당댐 방류량 (m3/s), 강화대교의 조위(EL.m)를 사용하였으며 수위예측 알고리즘을 통해 6시간 후 예측 수위값을 도출하여 기존 2단계(주의보, 경보)였던 홍수 예보 단계에서 4단계(관심, 보행자통제, 차량통제, 경계)로 구축하였다. 기존과 세분화된 홍수예보를 적용했을 경우의 유지관리 비용과 편익을 산정하여 하천이용시설의 경제성을 비교·분석한 결과, 유지관리 비용이 기존 대비 약 5% 이상 절감되었고 편익은 약 1.5배 이상 증가하였으며 관리등급은 평균 C등급(보통) 이상 달성하였다. 이는 수위예측 알고리즘의 적용으로 하천이용 활성화 및 투자의 효율성에 목적을 두었으며 향후 분석결과를 토대로 경제성모델을 개발하여 국가하천 내 관리그룹에 적용하면 효율적인 유지관리체계를 제시할 수 있을 것으로 기대된다.

  • PDF

An interactive teachable agent system for EFL learners (대화형 Teachable Agent를 이용한 영어말하기학습 시스템)

  • Kyung A Lee;Sun-Bum Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.797-802
    • /
    • 2023
  • In an environment where English is a foreign language, English learners can use AI voice chatbots in English-speaking practice activities to enhance their speaking motivation, provide opportunities for communication practice, and improve their English speaking ability. In this study, we propose a teaching-style AI voice chatbot that can be easily utilized by lower elementary school students and enhance their learning. To apply the Teachable Agent system to language learning, which is an activity based on tense, context, and memory, we proposed a new method of TA by applying the Teachable Agent to reflect the learner's English pronunciation and level and generate the agent's answers according to the learner's errors and implemented a Teachable Agent AI chatbot prototype. We conducted usability evaluations with actual elementary English teachers and elementary school students to demonstrate learning effects. The results of this study can be applied to motivate students who are not interested in learning or elementary school students to voluntarily participate in learning through role-switching.

A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model (ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구)

  • Sun-Ju Won;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

Predicting the Baltic Dry Bulk Freight Index Using an Ensemble Neural Network Model (통합적인 인공 신경망 모델을 이용한 발틱운임지수 예측)

  • SU MIAO
    • Korea Trade Review
    • /
    • v.48 no.2
    • /
    • pp.27-43
    • /
    • 2023
  • The maritime industry is playing an increasingly vital part in global economic expansion. Specifically, the Baltic Dry Index is highly correlated with global commodity prices. Hence, the importance of BDI prediction research increases. But, since the global situation has become more volatile, it has become methodologically more difficult to predict the BDI accurately. This paper proposes an integrated machine-learning strategy for accurately forecasting BDI trends. This study combines the benefits of a convolutional neural network (CNN) and long short-term memory neural network (LSTM) for research on prediction. We collected daily BDI data for over 27 years for model fitting. The research findings indicate that CNN successfully extracts BDI data features. On this basis, LSTM predicts BDI accurately. Model R2 attains 94.7 percent. Our research offers a novel, machine-learning-integrated approach to the field of shipping economic indicators research. In addition, this study provides a foundation for risk management decision-making in the fields of shipping institutions and financial investment.

Configurable Smart Contracts Automation for EVM based Blockchains

  • ZAIN UL ABEDIN;Muhammad Shujat Ali;Ashraf Ali;Sana Ejaz
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.147-156
    • /
    • 2023
  • Electronic voting machines (EVMs) are replacing research ballots due to the errors involved in the manual counting process and the lengthy time required to count the votes. Even though these digital recording electronic systems are advancements, they are vulnerable to tampering and electoral fraud. The suspected vulnerabilities in EVMs are the possibility of tampering with the EVM's memory chip or replacing it with a fake one, their simplicity, which allows them to be tampered with without requiring much skill, and the possibility of double voting. The vote data is shared among all network devices, and peer-to-peer verification is performed to ensure the vote data's authenticity. To successfully tamper with the system, all of the data stored in the nodes must be changed. This improves the proposed system's efficiency and dependability. Elections and voting are fundamental components of a democratic system. Various attempts have been made to make modern elections more flexible by utilizing digital technologies. The fundamental characteristics of free and fair elections are intractability, immutability, transparency, and the privacy of the actors involved. This corresponds to a few of the many characteristics of blockchain-like decentralized ownership, such as chain immutability, anonymity, and distributed ledger. This working research attempts to conduct a comparative analysis of various blockchain technologies in development and propose a 'Blockchain-based Electronic Voting System' solution by weighing these technologies based on the need for the proposed solution. The primary goal of this research is to present a robust blockchain-based election mechanism that is not only reliable but also adaptable to current needs.