• Title/Summary/Keyword: Memory enhancement

Search Result 201, Processing Time 0.021 seconds

A Risk-based System Analysis Model for Improving the Performance of Financial Solutions

  • Lee, Jong Yun;Kim, Jong Soo;Kim, Tai Suk
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1367-1374
    • /
    • 2015
  • In this paper, we propose a model which can prioritize the performance improvement work by analyzing the major risks and their influence, which can cause performance degradation in the system and show an example of a performance improvement using this model. In presentation-tier, as a result of log data analysis before and after the performance improvement of key processes which handle financial transactions, this model brought the CPU utilization and memory enhancement in the performance improvement work of the financial system which was carried out by applying the proposed model. It has been confirmed that the entire end-user can be accommodated. In the web-tier, the available memory increased by 200MB and we were able to improve the server restart(Recycling) that was sustained in the existing system. In the business logic-tier, we have been able to see better figures after performance improvements through the graph which analyzes the log collected with the key performance counters such as CPU%, Batch Requests/sec. In the data-tier, it has been confirmed that CPU usage and standby operation were reduced and the throughput was found to increase.

An efficient metaheuristic for multi-level reliability optimization problem in electronic systems of the ship

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1004-1009
    • /
    • 2014
  • The redundancy allocation problem has usually considered only the component redundancy at the lowest-level for the enhancement of system reliability. A system can be functionally decomposed into system, module, and component levels. Modular redundancy can be more effective than component redundancy at the lowest-level because in modular systems, duplicating a module composed of several components can be easier, and requires less time and skill. We consider a multi-level redundancy allocation problem in which all cases of redundancy for system, module, and component levels are considered. A tabu search of memory-based mechanisms that balances intensification with diversification via the short-term and long-term memory is proposed for its solution. To the best of our knowledge, this is the first attempt to use a tabu search for this problem. Our tabu search algorithm is compared with the previous genetic algorithm for the problem on the new composed test problems as well as the benchmark problems from the literature. Computational results show that the proposed method outstandingly outperforms the genetic algorithm for almost all test problems.

Dual-Port SDRAM Optimization with Semaphore Authority Management Controller

  • Kim, Jae-Hwan;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • This paper proposes the semaphore authority management (SAM) controller to optimize the dual-port SDRAM (DPSDRAM) in the mobile multimedia systems. Recently, the DPSDRAM with a shared bank enabling the exchange of data between two processors at high speed has been developed for mobile multimedia systems based on dual-processors. However, the latency of DPSDRAM caused by the semaphore for preventing the access contention at the shared bank slows down the data transfer rate and reduces the memory bandwidth. The methodology of SAM increases the data transfer rate by minimizing the semaphore latency. The SAM prevents the latency of reading the semaphore register of DPSDRAM, and reduces the latency of waiting for the authority of the shared bank to be changed. It also reduces the number of authority requests and the number of times authority changes. The experimental results using a 1 Gb DPSDRAM (OneDRAM) with the SAM controllers at 66 MHz show 1.6 times improvement of the data transfer rate between two processors compared with the traditional controller. In addition, the SAM shows bandwidth enhancement of up to 38% for port A and 31% for port B compared with the traditional controller.

Dopamine-dependent synaptic plasticity in an amygdala inhibitory circuit controls fear memory expression

  • Lee, Joo Han;Kim, Joung-Hun
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.1-2
    • /
    • 2016
  • Of the numerous events that occur in daily life, we readily remember salient information, but do not retain most less-salient events for a prolonged period. Although some of the episodes contain putatively emotional aspects, the information with lower saliency is rarely stored in neural circuits via an unknown mechanism. We provided substantial evidence indicating that synaptic plasticity in the dorsal ITC of amygdala allows for selective storage of salient emotional experiences, while it deters less-salient experience from entering long-term memory. After activation of D4R or weak fear conditioning, STDP stimulation induces LTD in the LA-ITC synapses. This form of LTD is dependent upon presynaptic D4R, and is likely to result from enhancement of GABA release. Both optogenetic abrogation of LTD and ablation of D4R at the dorsal ITC in vivo lead to heightened and over-generalized fear responses. Finally, we demonstrated that LTD was impaired at the dorsal ITC of PTSD model mice, which suggests that maladaptation of GABAergic signaling and the resultant LTD impairment contribute to the endophenotypes of PTSD. [BMB Reports 2016; 49(1): 1-2]

Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre

  • Katariya, Pankaj V.;Panda, Subrata K.;Hirwani, Chetan K.;Mehar, Kulmani;Thakare, Omprakash
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.595-605
    • /
    • 2017
  • The present article reported the thermal buckling strength of the sandwich shell panel structure and subsequent improvement of the same by embedding shape memory alloy (SMA) fibre via a general higher-order mathematical model in conjunction with finite element method. The geometrical distortion of the panel structure due to the temperature is included using Green-Lagrange strain-displacement relations. In addition, the material nonlinearity of SMA fibre due to the elevated thermal environment also incorporated in the current analysis through the marching technique. The final form of the equilibrium equation is obtained by minimising the total potential energy functional and solved computationally with the help of an original MATLAB code. The convergence and the accuracy of the developed model are demonstrated by solving similar kind of published numerical examples including the necessary input parameter. After the necessary establishment of the newly developed numerical solution, the model is extended further to examine the effect of the different structural parameters (side-to-thickness ratios, curvature ratios, core-to-face thickness ratios, volume fractions of SMA fibre and end conditions) on the buckling strength of the SMA embedded sandwich composite shell panel including the different geometrical configurations.

Telemetry Performance Enhancement Based on Spectral Efficient Retransmission (주파수 효율적 재전송 기반 원격측정 성능 향상)

  • Park, Chung-woon;Park, Hyo Sub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.429-436
    • /
    • 2017
  • Since the telemetry performance using the time-delayed data dissipates the wireless channel resources, we propose the spectral efficient retransmission scheme in this paper. In the proposed scheme, the telemetry data is retransmitted based on triggered memory to improve the spectral efficiency. The proposed scheme minimizes the error caused by multipath fading, antenna pattern as well as the error caused by the flight events. In the flight simulation data, we show the proposed scheme improves the telemetry performance based on spectral efficient retransmission.

Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets

  • Saeed Kamarian;Jung-Il Song
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2023
  • The present study follows three main goals. First, an analytical solution with high accuracy is developed to assess the effects of embedding pre-strained shape memory alloy (SMA) wires on the critical buckling temperatures of rectangular sandwich plates made of soft core and graphite fiber/epoxy (GF/EP) face sheets based on piecewise low-order shear deformation theory (PLSDT) using Brinson's model. As the second goal, this study compares the effects of SMAs on the thermal buckling of sandwich plates with those of carbon nanotubes (CNTs). The glass transition temperature is considered as a limiting factor. For each material, the effective ranges of operating temperature and thickness ratio are determined for real situations. The results indicate that depending on the geometric parameters and thermal conditions, one of the SMAs and CNTs may outperform the other. The third purpose is to study the thermal buckling of sandwich plates with advanced hybrid SMA/CNT/GF/EP composite face sheets. It is shown that in some circumstances, the co-incorporation of SMAs and CNTs leads to an astonishing enhancement in the critical buckling temperatures of sandwich plates.

A Light Weighted Robust Korean Morphological Analyzer for Korean-to-English Mobile Translator (한영 모바일 번역기를 위한 강건하고 경량화된 한국어 형태소 분석기)

  • Yuh, Sang-Hwa
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.191-199
    • /
    • 2009
  • In this paper we present a light weighted robust Korean morphological analyzer for mobile devices such as mobile phones, smart phones, and PDA phones. Such mobile devices are not suitable for natural language interfaces for their low CPU performance and memory restriction. In order to overcome the difficulties we propose 1) an online analysis by using Key Event Handler mechanism, 2) and a robust analysis of the Korean sentences with spacing errors without its correction pre-processing. We adapt the proposed Korean analyzer to a Korean-English mobile translator, which shows 5.8% memory usage reduction and 19.0% enhancement of average response time.

A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems

  • Tarutal Ghosh Mondal;Jau-Yu Chou;Yuguang Fu;Jianxiao Mao
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.179-193
    • /
    • 2023
  • This study explores an alternative to the existing centralized process for data anomaly detection in modern Internet of Things (IoT)-based structural health monitoring (SHM) systems. An edge intelligence framework is proposed for the early detection and classification of various data anomalies facilitating quality enhancement of acquired data before transmitting to a central system. State-of-the-art deep neural network pruning techniques are investigated and compared aiming to significantly reduce the network size so that it can run efficiently on resource-constrained edge devices such as wireless smart sensors. Further, depthwise separable convolution (DSC) is invoked, the integration of which with advanced structural pruning methods exhibited superior compression capability. Last but not least, quantization-aware training (QAT) is adopted for faster processing and lower memory and power consumption. The proposed edge intelligence framework will eventually lead to reduced network overload and latency. This will enable intelligent self-adaptation strategies to be employed to timely deal with a faulty sensor, minimizing the wasteful use of power, memory, and other resources in wireless smart sensors, increasing efficiency, and reducing maintenance costs for modern smart SHM systems. This study presents a theoretical foundation for the proposed framework, the validation of which through actual field trials is a scope for future work.

Programmable Multimedia Platform for Video Processing of UHD TV (UHD TV 영상신호처리를 위한 프로그래머블 멀티미디어 플랫폼)

  • Kim, Jaehyun;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.774-777
    • /
    • 2015
  • This paper introduces the world's first programmable video-processing platform for the enhancement of the video quality of the 8K(7680x4320) UHD(Ultra High Definition) TV operating up to 60 frames per second. In order to support required computing capacity and memory bandwidth, the proposed platform implemented several key features such as symmetric multi-cluster architecture for parallel data processing, a ring-data path between the clusters for data pipelining and hardware accelerators for computing filter operations. The proposed platform based on RP(Reconfigurable Processor) processes video quality enhancement algorithms and handles effectively new UHD broadcasting standards and display panels.