본 논문에서는 WebAssembly(WASM)를 활용하여 디바이스와 엣지 클라우드 간의 Federated Learning을 수행하는 최적화 전략을 제안한다. 제안된 전략은 일부 학습을 디바이스에서 수행하고, 나머지 학습을 엣지 클라우드에서 수행하여 효율성을 극대화하는 것을 목표로 한다. 특히, GPU 메모리 세그먼트 간 데이터 이동과 연산 작업의 중첩을 최적화하여 전체 학습 시간을 줄이고 GPU 사용률을 향상시키는 방법을 수학적으로 설명하고 평가한다. 다양한 실험 시나리오를 통해 비동기 데이터 전송과 연산 중첩이 학습 시간을 단축하고 GPU 사용률을 향상시키며, 모델 정확도를 증가시킴을 확인하였다. 모든 최적화 기법을 적용한 시나리오에서 학습 시간이 47% 단축되었고, GPU 사용률은 91.2%로 향상 되었으며, 모델 정확도는 89.5%로 증가함을 확인하여 비동기 데이터 전송과 연산 중첩이 데이터 전송을 기다리는 GPU 유휴 시간을 줄이고, 병목 현상을 완화할 수 있음을 확인하였다. 본 연구는 향후 Federated Learning 시스템의 성능 최적화에 기여할 수 있을 것으로 사료된다.
To reduce the losses caused by aging failure of insulation gate bipolar transistor (IGBT), which is the core components of nuclear power plant rod position indicating and rod control (RPC) system. It is necessary to conduct studies on its life prediction. The selection of IGBT failure characteristic parameters in existing research relies heavily on failure principles and expert experience. Moreover, the analysis and learning of time-domain degradation data have not been fully conducted, resulting in low prediction efficiency as the monotonicity, time correlation, and poor anti-interference ability of extracted degradation features. This paper utilizes the advantages of the stacked denoising autoencoder(SDAE) network in adaptive feature extraction and denoising capabilities to perform adaptive feature extraction on IGBT time-domain degradation data; establishes a long-short-term memory (LSTM) prediction model, and optimizes the learning rate, number of nodes in the hidden layer, and number of hidden layers using the Gray Wolf Optimization (GWO) algorithm; conducts verification experiments on the IGBT accelerated aging dataset provided by NASA PCoE Research Center, and selects performance evaluation indicators to compare and analyze the prediction results of the SDAE-LSTM model, PSOLSTM model, and BP model. The results show that the SDAE-LSTM model can achieve more accurate and stable IGBT life prediction.
Lithium-ion batteries (LIBs) have attracted significant attention as potential energy storage solutions due to their high energy density, minimal self-discharge, extended cycle life, and absence of memory effects. However, conventional LIBs use graphite as the anode material and as a result struggle to meet the increasing demand for higher energy density because of the low theoretical capacity of graphite. In order to enhance Li storage capacity and address the current limitations of LIBs, this study designed and analyzed SnO2 nanoflakes/CNF, which is an advanced anode material with a unique hierarchical structure synthesized via a facile method involving incipient wetness followed by annealing. The in-situ formed SnO2 nanoflakes improve the electrolyte accessibility and shorten the ion and electron transport pathways, thereby enhancing the reaction kinetics. Additionally, the CNF matrix enhances the electrical conductivity, accelerates electron transport, and mitigates volume changes. The integrated SnO2 nanoflakes/CNF cell demonstrated outstanding cycling performance and excellent rate capability, achieving a notable reversible capacity of 636 mAh g-1 after 100 cycles at 0.1 C. This study provides valuable insights into the design of high-efficiency anode materials for the advancement of high-performance LIBs.
ISM 대역을 사용하는 RFID 시스템에서 대상물에 장착되는 태그는 내장된 컨트롤러와 메모리를 동작시키기 위해서 소형 안테나로부터 들어온 전파 신호를 쇼트키 다이오드로 정류하여 전원으로 사용하게 된다. 반도체 소자의 비선형성에 의한 고조파 성분과 안테나의 고차 모드의 공진으로 여기되는 불요파는 태그의 성능 저하를 가져온다. 본 논문에서는 2차 고조파 성분을 제거함으로써 시스템 효율을 개선하기 위하여 "스터브 I 형 DGS 슬롯 구조"를 이용한 새로운 형태의 저역통과 필터를 구현하였다. 스터브 폭과 I 형 슬롯의 연결 폭을 조정하여 최적의 통과대역 및 저지대역 주파수 특성을 갖도록 설계하고 제작하였다. 제작된 저역통과 필터의 측정결과는 차단 주파수는 3.25 GHz 이고 2.4 GHz~2.5 GHz 의 대역에서 삽입손실은 -0.29~-0.3 dB 이고 반사손실은 -27.688~-33.665 dB 로 비교적 양호한 특성을 보여주고 있으며, 2배 고조파의 대역인 4.9 GHz 에서의 저지특성은 약 -19.367 dB를 보여준다. 이 구조의 필터를 이용하여 RFID, WLAN 등의 응용에 적용되어 고조파와 불요파를 제거함으로서 시스템 효율의 개선에 사용할 수 있을 것이다.
센서 네트워크는 스스로 감지하고 계산하고 무선으로 서로 통신할 수 있는 기능을 갖춘 센서들로 이루어진 네트워크이다. 센서 네트워크의 특징들로는 네트워크가 자체적으로 관리가 되어야 한다는 것과 배터리 전원이여서 전력의 효율성을 크게 고려해야 한다는 것이 있다. 센서 네트워크에서 생성되는 많은 양의 연속적인 데이터에 대하여 여러 개의 질의들을 동시에 처리해야 하는 경우에 전력의 효율성을 극대화시켜야 한다. 본 연구에서는 센서 네트워크에서 감시 목적의 미리 정의된 다중 질의들에 대해 색인을 두어 다중 질의 처리 성능을 높이고 메모리와 전력을 효율적으로 사용할 수 있는 기법을 제안한다. 공간 색인 기법 중에서 이진 탐색트리에 기반한 데이터 구조로서 각 레벨별로 차원이 반복되어 각 차원을 분할시키는 k-d 트리와, 공간을 계층적 구조로 자르며 겹침 관계를 줄인 R-트리의 변형인 R+-트리를 기반으로 하여 이들의 응용 및 융합을 통해 다중 질의를 색인하는 새로운 트리인 SMILE 트리를 제안한다. 질의들에 대한 SMILE 트리를 구성하여 센서 네트워크에서 생성되는 스트림 데이터에 대하여 관련된 질의를 탐색하도록 하면 질의를 순차 탐색하는 것과 비교하여 경우에 따라서는 평균 탐색시간을 약 50% 정도로 줄일 수 있다.
최근 기후변화 및 유역개발로 인하여 메콩강 유역의 수문환경이 급격히 변화하고 있으며, 메콩강을 공유하는 국가의 수재해 예방 및 지속가능한 수자원개발을 위해서는 메콩강 주요지점에서의 유량 정보의 분석 및 예측이 요구된다. 본 연구에서는 물리적 기반의 수문모형인 SWAT과 데이터기반 딥러닝 알고리즘인 LSTM을 이용하여 메콩강 하류 Kratie 지점의 유출모의를 수행하고, 유출모의 정확도 및 두 가지 방법론의 장 단점을 비교 분석한다. SWAT 모형의 구축을 위해 범용 입력자료(지형: HydroSHED, 토지이용: GLCF-MODIS, 토양: FAO-Soil map, 강우: APHRODITE 등)을 이용하였으며 warming-up 및 매개변수 보정 후 2003~2007년 일유량 모의를 수행하였다. LSTM을 이용한 유출모의의 경우, 딥러닝 오픈소스 라이브러리인 TensorFlow를 활용하여 Kratie 지점기준 메콩강 상류 10개 수위관측소의 두 기간(2000~2002, 2008~2014) 일수위 정보만을 이용하여 심층신경망을 학습하고, SWAT 모형과 마찬가지로 2003~2007년을 대상으로 Kratie 지점에 대한 일수위 모의 후 수위-유량관계곡선식을 이용하여 유출량으로 환산하였다. 두 모형의 모의성능 비교 검토를 위하여 모의기간에 대해 NSE (Nash-Sutcliffe Efficiency)을 산정한 결과, SWAT은 0.9, LSTM은 보다 높은 0.99의 정확도를 나타내는 것으로 분석되었다. 메콩강과 같은 대유역의 특정 지점에 대한 수문시계열 자료의 모의를 위해서는 다양한 입력자료를 요구하는 물리적 수문모형 대신 선행 시계열자료의 변동성을 기억 학습하여 이를 예측에 반영하는 LSTM 기법 등 데이터기반의 심층신경망 모형의 적용이 가능할 것으로 판단된다.
The effects of Cervus elaphus and Cervus elaphus aquapuncuture on body weight, protein efficiency ratio, body length, serum growth hormone and intellectual development were studied for thirty-four days. The results were summarized as follows. 1. Body weight significantly increased in Cervus elaphus aquapuncture oral administration group compared to GH groups. 2. Protein efficiency ratio had no significant difference within all groups. 3. Body length significantly increased in Cervus elaphus aquapuncture group compared to GH injection group on 3rd day, tail length significantly increased in Cervus elaphus aquapuncture group and Cervus elaphus aquapuncture oral administration group compared to GH injection group but, body length has no significant difference within all groups. 4. Serum GH significantly increased in Cervus elaphus aquapuncture oral administration group compared to that of GH injection group. 5. As results of observing memory acquisition using Morris water maze system, there was no significant difference within all groups. 6. As results of observing retention using Morris water maze system, staying times significantly increased in Cervus elaphus aquapuncture oral administration group compared to that of GH injection group at Ist trial and 3rd trial. 7. As results of observing staining intensity of NADPH-d-positive neurons in tissue of hippocampal part, significant increasing of staining intensity were observed in septum and VDB of hippocampus in Cervus elaphus aquapuncture oral administration group compared to that of GH injection group. According to the above results, it is concluded that Cervus elaphus oral administration and Cervus elaphus aquapuncture on acupoint G39 showed effects on growth and intellectual development of animals.
기업들은 기술협력 네트워크를 통하여 새로운 고급기술과 지식을 내부화시키고 활용함으로써 규모 및 범위의 경제를 실현할 수 있고, 기술협력 네트워크의 파트너 기업과 위험과 비용을 분담할 수 있으며, 제품의 시장우위를 선점하거나 시장에서의 자사의 위치를 강화할 수 있다. 이러한 기술협력 네트워크의 이점에 근거하여 현재까지 기존의 관련연구들은 일반적으로 기술협력이 기업의 경영성과에 긍정적인 영향을 미치는가에 집중되어왔다. 그러나 기존의 기술협력과 경영성과의 관계를 규명한 연구들은 단지 경영성과에 관한 기술협력 네트워크의 역할을 조명하는데 그친다. 본 연구에서는 기존의 연구들에서 간과된 기술협력 네트워크의 중간과정을 보호 메커니즘, 관계학습, 관계성과로 분류하고, 이를 자원기반이론의 일반적 구조인 자원, 역량, 성과에 각각 적용하였다. 실증분석의 결과는 다음과 같다. 관계특유투자와 관계자본은 역량으로서의 관계학습에 긍정적인 영향을 미치고 있는 것으로 나타났다. 둘째, 정보교환, 공동의 정보이해, 관계특유 기억개발은 관계지향성에 긍정적인 영향을 나타내고 있으나, 정보교환이 효율성과 효과성에 미치는 유의성은 발견되지 않았다. 셋째, 관계특유투자는 관계자본에 긍정적인 영향을 미치고 있으며, 효율성과 효과성은 장기지향성에 긍정적인 영향을 미치고 있는 것으로 나타났다. 본 연구는 비대칭적인 기술의존 구조를 형성하는 기술협력 네트워크 관계에서 자원기반이론에 입각하여 기존의 연구들이 간과하고 있는 보호 메커니즘, 관계학습, 관계성과의 역할을 규명함으로써 보호 메커니즘과 관계학습의 중요성을 제시하였다. 또한 협력 파트너와의 관계에서 기업의 어떠한 행동변화를 유발함으로써 관계성과에 도달하는가를 살펴봄으로써 보호 메커니즘은 기술협력 파트너와의 관계학습을 통해 관계성과에 영향을 제공할 수 있다는 점을 분석하는데 의의가 있다고 볼 수 있겠다.
본 논문에서는 UHD(Ultra High Definition) 영상을 위한 고성능 HEVC(High Efficiency Video Coding) 디블록킹 필터 하드웨어 구조를 제안한다. 제안하는 하드웨어 구조는 필터링 수행시간 단축을 위해 두 개의 필터로 구성된 4단 파이프라인 구조를 가지며 경계강도 모듈을 병렬 구조로 설계하였다. 또한 저전력 하드웨어 구조를 위해 파이프라인의 단계를 클록 게이팅으로 설계하였고, 파이프라인 과정에서 단일 포트 SRAM에 접근할 때 발생하는 해저드 문제를 해결하기 위해 분할된 메모리 구조로 설계하였다. 전처리 단계에서 단일 포트 SRAM에 데이터를 저장할 때 발생하는 지연시간을 감소하기 위해 새로운 필터링 순서를 제안하였다. 본 논문에서 제안하는 디블록킹 필터 하드웨어 구조는 Verilog HDL로 설계 하였으며, TSMC 0.18um CMOS 표준 셀 라이브러리를 이용하여 합성한 결과 22k 개의 로직 게이트로 구현되었다. 또한, 동작 주파수는 150MHz에서 UHD급 8K 해상도인 $7680{\times}4320@60fps$ 처리가 가능하고 최대 동작 주파수는 285MHz이다. 제안하는 하드웨어 구조의 기본 처리단위 당 사이클 수를 비교 분석한 결과, 처리율이 기존 구조 대비 32% 향상된 결과를 얻었다.
본 논문에서는 UHD급 영상의 실시간 처리를 위한 고성능 HEVC(High Efficiency Video Coding) SAO(Sample Adaptive Offset) 부호화기의 효율적인 하드웨어 구조를 제안한다. SAO는 HEVC에서 새롭게 채택된 루프 내 필터 기술 중 하나이다. 본 논문에서 제안하는 SAO 부호화기 하드웨어 구조는 메모리 접근 최소화 및 화소들의 처리를 간소화하기 위해 three-layered buffer를 사용한다. 또한 연산시간 및 연산량을 줄이기 위해서 4개의 화소들을 병렬적으로 에지 오프셋과 밴드 오프셋으로 분류하며, 화소들의 분류와 SAO 파라메터 적용을 2단계 파이프라인 구조로 구현하고, 하드웨어 면적을 줄이기 위해서 덧셈과 뺄셈, 쉬프트 연산, 그리고 재귀 비교기만을 사용한다. 본 논문에서 제안하는 SAO 부호화기 하드웨어 구조는 Verilog HDL로 설계하였으며, TSMC $0.18{\mu}m$ CMOS 표준 셀 라이브러리를 사용하여 합성한 결과 약 180k개의 게이트로 구현되었다. 또한, 110MHz의 동작주파수에서 4K UHD급 해상도인 $4096{\times}2160@30fps$의 실시간 처리가 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.