• Title/Summary/Keyword: Memory efficiency

Search Result 721, Processing Time 0.032 seconds

Advanced Hybrid EER Transmitter for WCDMA Application Using Efficiency Optimized Power Amplifier and Modified Bias Modulator (효율이 특화된 전력 증폭기와 개선된 바이어스 모듈레이터로 구성되는 진보된 WCDMA용 하이브리드 포락선 제거 및 복원 전력 송신기)

  • Kim, Il-Du;Woo, Young-Yun;Hong, Sung-Chul;Kim, Jang-Heon;Moon, Jung-Hwan;Jun, Myoung-Su;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.880-886
    • /
    • 2007
  • We have proposed a new "hybrid" envelope elimination and restoration(EER) transmitter architecture using an efficiency optimized power amplifier(PA) and modified bias modulator. The efficiency of the PA at the average drain voltage is very important for the overall transmitter efficiency because the PA operates mostly at the average power region of the modulation signal. Accordingly, the efficiency of the PA has been optimized at the region. Besides, the bias modulator has been accompanied with the emitter follower for the minimization of memory effect. A saturation amplifier, class $F^{-1}$ is built using a 5-W PEP LDMOSFET for forward-link single-carrier wideband code-division multiple-access(WCDMA) at 1-GHz. For the interlock experiment, the bias modulator has been built with the efficiency of 64.16% and peak output voltage of 31.8 V. The transmitter with the proposed PA and bias modulator has been achieved an efficiency of 44.19%, an improvement of 8.11%. Besides, the output power is enhanced to 32.33 dBm due to the class F operation and the PAE is 38.28% with ACLRs of -35.9 dBc at 5-MHz offset. These results show that the proposed architecture is a very good candidate for the linear and efficient high power transmitter.

Development of Expert System for Designing Power Transmission Gears (II) (동력전달용 치차설계 전문가 시스템 개발연구 II)

  • 정태형;변준형;이동형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.122-131
    • /
    • 1992
  • An expert system is developed which can design the power transmission involute cylindrical gears on the basis of strength and durability. Bending strength, surface durability, scoring, and wear probability are considered as the basis. The basic components of the expert system are knowledge base, inference engine, and working memory. The knowledges in knowledge base are classified hierarchically into the knowledges used in selection of gear type, selection of materials, and determination of K factor and are represented by rules. In the inference engine two inference methods are implemented with the depth first search method. For-ward chaining method is introduced in the selection of gear type and materials and in the determination of K factor. Backward chaining method is introduced in the detailed design of module and face width in accordance with the validation of strength. And inference efficiency is achieved by constructing the part needing a lot of numerical calculations in strength estimation separately from inference mechanism. The working memory is established to save the results during inference temporarily. In addition, design database of past design results is built for consultation during design and knowledge acquisition facility, explanation facility, and user interface are included for the usefulness of user. This expert system is written with the PROLOG programming language and the FORTRAN language in numerical calculation part which interfaced with PROLOG and can also be executed on IBM-PC compatible computer operated by MS-DOS alone.

Understanding the Experience of Visual Change Detection Based on the Experience of a Sensory Conflict Evoked by a Binocular Rivalry (양안경합의 감각적 상충 경험에 기초한 시각적 변화탐지 경험에 대한 이해)

  • Shin, Youngseon;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.341-350
    • /
    • 2013
  • The present study aimed to understand the sensory characteristic of change detection by comparing the experience of detecting a salient visual change against the experience of detecting a sensory conflict evoked by a binocular mismatch. In Experiment 1, we used the change detection task where 2, 4, or 6 items were short-term remembered in visual working memory and were compared with following test items. The half of change-present trials were manipulated to elicit a binocular rivalry on the test item with the change by way of monocular inputs across the eyes. The results showed that change detection accuracy without the rivalry manipulation declined evidently as the display setsize increased whereas no such setsize effect was observed with the rivalry manipulation. Experiment 2 tested search efficiency for the search array where the target was designated as an item with the rivalry manipulation, and found the search was very efficient regardless of the rivalry manipulation. The results of Experiment 1 and 2 showed that when the given memory load varies, the experience of detecting a salient visual change become similar to the experience of detecting a sensory conflict by a binocular rivalry.

  • PDF

An Effective Method Guaranteeing Mutual Exclusion of Lock Waiting Information for Deadlock Detection in Main Memory Databases (주기억장치 데이타베이스에서 교착 상태의 검출을 위한 락 대기 정보의 효과적인 상호 배제 기법)

  • Kim, Sang-Wook;Lee, Seung-Sun;Choi, Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1313-1321
    • /
    • 1999
  • The two-phase locking protocol(2PL) is the most widely-used concurrency control mechanism for guaranteeing logical consistency of data in a database environment where a number of transactions perform concurrently. The problem inherent in the 2PL protocol is a deadlock, where a set of transactions holding some locks indefinitely wait an additional lock that is already held by other transactions in the set. The deadlock detector is a DBMS sub-component that examines periodically whether a system is in a deadlock state based on lock waiting information of transactions. The deadlock detector and transactions execute concurrently in a DBMS and read and/or write the lock waiting information simultaneously. Since the lock waiting information is a shared one, we need an efficient method guaranteeing its physical consistency by using mutual exclusion. The efficiency of the mutual exclusion method is crucial especially in a main memory DBMS with high performance since it seriously affects the performance of an entire system. In this paper, we propose a new method that effectively guarantees physical consistency of lock waiting information. Two primary goals of our method are to minimize the processing overhead and to maximize system concurrency.

  • PDF

Improving Performance of File-referring Octree Based on Point Reallocation of Point Cloud File (포인트 클라우드 파일의 측점 재배치를 통한 파일 참조 옥트리의 성능 향상)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.437-442
    • /
    • 2015
  • Recently, the size of point cloud is increasing rapidly with the high advancement of 3D terrestrial laser scanners. The study aimed for improving a file-referring octree, introduced in the preceding study, which had been intended to generate an octree and to query points from a large point cloud, gathered by 3D terrestrial laser scanners. To the end, every leaf node of the octree was designed to store only one file-pointer of its first point. Also, the point cloud file was re-constructed to store points sequentially, which belongs to a same leaf node. An octree was generated from a point cloud, composed of about 300 million points, while time was measured during querying proximate points within a given distance with series of points. Consequently, the present method performed better than the preceding one from every aspect of generating, storing and restoring octree, so as querying points and memorizing usage. In fact, the query speed increased by 2 times, and the memory efficiency by 4 times. Therefore, this method has explicitly improved from the preceding one. It also can be concluded in that an octree can be generated, as points can be queried from a huge point cloud, of which larger than the main memory.

A Kernel Module to Support High-Performance Intra-Node Communication for Multi-Core Systems (멀티 코어 시스템을 위한 고속 노드내 통신 지원 모듈)

  • Jin, Hyun-Wook;Kang, Hyun-Goo;Kim, Jong-Soon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.407-415
    • /
    • 2007
  • In parallel cluster computing systems, the efficiency of communication between computing nodes is one of important factors that decide overall system performance. Accordingly, many researchers have studied on high-performance inter-node communication. The recently launched multi-core processor, however. increases the importance of intra-node communication as well because the more the number of cores in a node, the more the number of parallel processes running in the same node. Though there have been studies on intra-node communications, these have limited considerations on the state-of-the-art systems. In this paper, we propose a Linux kernel module that minimizes the number of data copy by exploiting the memory mapping mechanism for high-performance intra-node communication. The proposed kernel module supports the Linux kernel version 2.6. The performance measurements over a multi-core system present that the proposed kernel module can achieve lower latency up to 62% and higher throughput up to 144% than an existing kernel module approach. In addition, the measurements reveal that the performance of intra-node communication can vary significantly based on whether the cores that run the communication processes are belong to the same processor package (i.e., sharing the L2 cache).

Cyclostorm : The Cloud Computing Service for Uplifting Javascript Processing Efficiency of Mobile Applications based on WAC (Cyclostorm : WAC 기반 모바일 앱의 자바스크립트 처리 효율 향상을 위한 클라우드 컴퓨팅 서비스)

  • Bang, Jiwoong;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.150-164
    • /
    • 2013
  • Currently it is being gradually focused on the mobile application's processing performance implemented by Javascript and HTML (Hyper Text Markup Language) due to the dissemination of mobile web application supply based on the WAC (Wholesale Application Community). If the application software has a simple functional processing structure, then the problem is benign, however, the load of a browser is getting heavier as the amount of Javascript processing is being increased. There is a limitation on the processing time and capacity of the Javascript in the ordinary mobile browsers which are on the market now. In order to solve those problems, the Web Worker that is not supported from the existing Javascript technology is now provided by the HTML 5 to implement the multi thread. The Web Worker provides a mechanism that process a part from the single thread through a separate one. However, it can not guarantee the computing ability as a native application on the mobile and is not enough as a solution for improving the fundamental processing speed. The Cyclostorm overcomes the limitation of resources as a mobile client and guarantees the performance as a native application by providing high computing service and ascripting the Javascript process on the mobile to the computer server on the cloud. From the performance evaluation experiment, the Cyclostorm shows a maximally 6 times faster computing speed than in the existing mobile browser's Javascript and 3 to 6 times faster than in Web Worker of the HTML 5. In addition, the usage of memory is measured less than the existing method since the server's memory has been used. In this paper, the Cyclostorm is introduced as one of the mobile cloud computing services to conquer the limitation of the WAC based mobile browsers and to improve the existing web application's performances.

Efficient Floor Vibration Analysis in A Shear Wall Building Structure (벽식구조물의 효율적인 연직진동해석)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.55-66
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system, composed of only reinforced concrete walls and slabs, have been constructed. In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore, an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time. If all of the DOFs except those perpendicular to walls or slabs in the shear wall structure eliminated using the matrix condensation technique at a time, the computational time for the matrix condensation would be significant. Thus, the modeling technique using super elements and substructuring technique is proposed to reduce the computational time for the matrix condensation. Dynamic analysis of 3-story and 5-story shear wall example structures were performed to verify the efficiency and accuracy of the proposed method. It was confirmed that the proposed method can provide the results with outstanding accuracy requiring significantly reduced computational time and memory.

Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network (무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델)

  • Kim, Suk-young;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • Wireless sensors that make up the Wireless Sensor Network generally have extremely limited power and resources. The wireless sensor enters the sleep state at a certain interval to conserve power. The Sleep deflation attack is a deadly attack that consumes power by preventing wireless sensors from entering the sleep state, but there is no clear countermeasure. Thus, in this paper, using clustering-based binary search tree structure, the Sleep deprivation attack detection model is proposed. The model proposed in this paper utilizes one of the characteristics of both attack sensor nodes and normal sensor nodes which were classified using machine learning. The characteristics used for detection were determined using Long Short-Term Memory, Decision Tree, Support Vector Machine, and K-Nearest Neighbor. Thresholds for judging attack sensor nodes were then learned by applying the SVM. The determined features were used in the proposed algorithm to calculate the values for attack detection, and the threshold for determining the calculated values was derived by applying SVM.Through experiments, the detection model proposed showed a detection rate of 94% when 35% of the total sensor nodes were attack sensor nodes and improvement of up to 26% in power retention.

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.