• Title/Summary/Keyword: Memory dysfunction

Search Result 149, Processing Time 0.026 seconds

Association of Schizophrenia with Pathological Aging : A Behavioral and Histological Study Using Animal Model (정신분열병과 병적 노화의 연관성 : 동물모형을 이용한 행동 및 조직학적 연구)

  • Cheon, Jin-Sook;Oh, Byoung-Hoon;Chang, Hwan-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.83-94
    • /
    • 1998
  • Objectives : Phencyclidine(PCP) or PCP-like substances such as ketamine have been known to rekindle the cognitive dysfunction in schizophrenia. The aims of this study were to identify whether PCP-like substances can produce cognitive deficit in schizophrenia, to discuss relation with aging process, and finally to speculate underlying neurochemical mecha-nisms by various drug responses. Methods : In experiment I, radial maze tests were done in 24 Sprague-Dawley rats for 3 days to get baseline data. Being divided into 4 groups(6 rats respectively) of normal aged, normal adult controls, atropine-treated and ketamine-treated, the radial maze tests were repeated on every week for 6 weeks, and then the rats were sacrificed by intracardiac perfusion with phosphate-buffered 10% formaldehyde solution for histology. The brain specimen was stained with hematoxylin-eosin to count cells in the prefrontal cortex and hippocampus. In experiment II, radial maze tests were done for 48 rats before any drug treatment and only after ketamine administration. Thereafter, haloperidol, bromocriptine, clonidine, nimodipine, tacrine, valproic acid, naloxone and fluoxetine were intramuscularly injected on every other day in addition to ketamine. Radial maze tests were repeated on every week for 6 weeks, and then rats were prepared by the same procedure for histology. Results : 1) Reaction times of radial maze tests of atropine-treated rats were significantly prolonged than those of normal aged(p<0.05) or normal adult controls(p<0.05). Cell numbers of prefrontal cortex & hippocampus in ketamine-treated rats were significantly reduced than those in normal aged (p<0.05) or normal adult controls(p<0.005). 2) Reduced cell numbers by ketamine became significantly raised by tacrine administration in prefrontal cortex & hippocampus(p<0.05), while there were no significant changes on radial maze tests. Cell numbers also tended to be raised by nimodipine, fluoxetine and haloperidol administration. Conclusions : In conclusion, the visuospatial memory disorders in ketamine-induced psychotic rats might be partly asso-ciated with aging process. Furthermore, the responses to the various drugs suggested cholinergic system might have an important role in the neurochemical mechanism of the cognitive dysfunction in ketamine-induced psychosis. Otherwise, calcium metabolism as well as serotonergic and dopaminergic systems seemed to be possibly related.

  • PDF

Neurocognitive Dysfunction in Patients with Obsessive-Compulsive Disorder in Association of Duration of Untreated Illness : A Preliminary Study (강박장애의 치료받지 않은 유병기간에 따른 신경인지기능 이상 : 예비연구)

  • Oh, Sang Hoon;Kim, Sung Nyun;Han, Jaewook;Lee, Junhee;Lee, Tae Young;Shin, Min-Sup;Kwon, Jun Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • Objectives Obsessive-compulsive disorder (OCD) is a chronic and disabling psychiatric disorder. The duration of untreated illness (DUI) has been suggested as one of the predictors of clinical course and outcome in various psychiatric disorders. There is increasing evidence that cognitive dysfunction is associated with the prognosis of OCD. The aim of this study was to investigate the influence of DUI on the neurocognitive functions in patients with OCD. Methods Sixty-two patients with a DSM-IV diagnosis of OCD from the outpatient clinic were included in this study. We defined the short DUI if the DUI was 2-year or less and the long DUI if it was longer than 2-year. Neurocognitive functions were assessed by visuospatial memory function test and 4 subsets of K-WAIS such as vocabulary, arithmetic, block design and picture arrangement. Differences in neurocognitive functions as well as clinical variables between OCD patients with short DUI and those with long DUI were investigated. Correlation analyses were also performed to determine the correlation between DUI and neurocognitive functions. Results Compared with the short DUI group, the long DUI group performed worse in the block design test, which measures executive function. The long DUI group also had a higher level of compulsive symptom severity than the short DUI group. However, the DUI was not correlated with neurocognitive functions. Conclusions Findings in this preliminary study suggest that the long DUI in patients with OCD is associated with more severe executive dysfunction. Studies with larger samples and longitudinal design are needed to further confirm the prognostic role of the DUI in OCD.

Virtual Reality in Cognitive Rehabilitation (인지재활 영역에서 가상현실)

  • Park, Inn-Jee;Park, Heung-Seok;Kim, Tae-Hoon
    • Therapeutic Science for Rehabilitation
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2012
  • Introduction : This study reviews the main areas of cognitive rehabilitation including executive dysfunction, memory dysfunction, perceptual dysfunction, attention deficit, and dysfunctions in activities of daily living in order to apply to the adaptation of occupational therapy. Body : Cognition programs based on the virtual reality are being used not only to evaluate but to train the overall components of human's cognition. Because the cognitive program is concentrating on the real environment, it is known to bring a remarkable transitional effect to the actual environment, compared to the basic computer-based evaluation and training. Applying virtual reality to the rehabilitation program can develop and advance the high technology and can result in a major effect on the innovative treatment technology. Conclusions : In this process, virtual reality is expected to be researched more in the near future. Particularly in the cognitive realm, it is imperative for researchers to pay attention to the improved transitional effect of the virtual reality toward the actual environment, rather than the already existing method of evaluations. Therefore, application of the virtual reality for the cognitive training should be researched for various types of subjects in the diverse aspects of congnitive function. Application of the virtual reality in the cognitive function has its unlimited potential, thus the rehabilitation program integrated with not only evaluation but training and education is expected extensively in the future.

Ameliorative effect of onion (Allium Cepa L.) flesh and peel on amyloid-β-induced cognitive dysfunction via mitochondrial activation (미토콘드리아 활성화를 통한 양파(Allium Cepa L.) 과육 및 과피의 Amyloid-β 유도성 인지손상에 대한 개선효과)

  • Park, Seon Kyeong;Lee, Uk;Kang, Jin Yong;Kim, Jong Min;Shin, Eun Jin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.263-273
    • /
    • 2020
  • In this study, in order to confirm the ameliorative effects of onion (Allium cepa L.) flesh and peel on amyloidbeta (Aβ)-induced cognitive dysfunction, we evaluated their in vitro neuroprotection and in vivo cognitive functions. As the result of in vitro neuroprotection, the protective effect of the ethyl acetate fraction of onion flesh (EOF) on Aβ-induced cytotoxicity was similar to that of the ethyl acetate fraction of onion peel (EOP). In the behavioral tests, the EOF and EOP effectively improved the Aβ-induced learning and memory impairments. For this reason, it could be concluded that the EOF and EOP improved the antioxidant activities (superoxide dismutase, oxidized glutathione/total glutathione, and malondialdehyde) in brain tissue. In addition, the EOF and EOP effectively activated mitochondrial functions by protecting the mitochondrial membrane potential, ATP, mitochondria-mediated protein (BAX and cytochrome c), and caspase 3/7 activities. The EOF and EOP also improved the cholinergic system (acetylcholinesterase and acetylcholine). Therefore, we suggest that onion could be used for management of Aβ-induced cognitive dysfunction.

Cognitive Impairment in the Patients with Mildly Active Systemic Lupus Erythematosus (경증 전신성 홍반성 루프스 환자의 인지기능장애)

  • Kim, Jin-Hee;Lee, Chul;Lee, Chang-Uk;Paik, In-Ho
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.5 no.1
    • /
    • pp.89-96
    • /
    • 1997
  • This study was designed to determine whether cognitive impairment was evident in patients with SLE. Also, it aimed to examine the association of cognitive impairment with other clinical variables. The subjects consisted of 20 patients with mildly active SLE and 20 healthy controls. Methods : A total of 20 SLE patients and 20 normal controls completed a computerized neuropsychological test battery using Vienna Test System. These included Cognitrone test, Continuous attention test, Corsi block tapping test, Standard progressive matrices. Also, neuro-behavioral cognitive status examination was done. The symptom severity of depression was measured with Beck Depression Inventory, Hamilton Depression Rating Scale, and current medications were documented. Disease activity was rated using the SLE diasease activity index (SLEDAI). Results : SLE patients had poorer performance than normal controls on the tests of Cognitrone, attention, nonverbal IQ and memory, independent of age, education, disease activity, steroid use and depression status. Conclusion : Cognitive dysfunction was not uncommon in ambulatory SLE patients as measured by standardized neuropsychological tests. It seemed to occur independently of various clinical variables. These findings would suggest that cognitive dysfunction in SLE may be explained by reflecting subclinical central nervous system(CNS) involvement, rather than coexisting psychological distress due to chronic illness or side effect of medication.

  • PDF

Ameliorative Effect of Aster scaber Thunberg and Chaenoleles sinensis Koehne Complex Extracts Against Oxidative Stress-induced Memory Dysfunction in PC12 Cells and ICR Mice (PC12세포와 동물모델에서의 기억력 장애를 유도하는 산화적스트레스에 대한 취나물과 모과 복합추출물의 개선 효과)

  • Park, Chan Kyu;Choi, Soo Jung;Shin, Dong Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.365-375
    • /
    • 2019
  • Background: Oxidative stress plays an important role in neuro-degenerative disorders such as Alzheimer's disease. Oxidative stress is mediated by reactive oxygen species (ROS), which are implicated in the pathogenesis of numerous diseases, and account for the toxicity of a wide range of compounds. Methods and Results: In order to study the neuro-protective effect of the complex extracts of Aster scaber Thunberg (AS) and Chaenoleles sinensis Koehne (CSK) against hydrogen peroxide in PC12 cells, cell viability was evaluated by the MTT assay using tetrazole, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the intracellular ROS levels were determined the by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. In order to examine the anti-amnesic effects of the complex extracts of AS and CSK, behavioral tests were performed on male ICR mice. The ameliorating effect of the complex extracts against Aβ1-42-induced learning and memory impairment was analyzed by y-maze and passive avoidance tests. The AS and CSK extracts showed neuro-protective activity both in vitro and in vivo, and the neuro-protective effect of their 60 : 40 (AS : CSK) mixture was better than that of the other mixtures. Moreover, the complex extracts synergistically inhibited acetylcholinesterase activity and rapid peroxidation. Conclusions: A mixture of the AS and CSK extracts could be used to develop functional foods and serve as raw materials for the development of therapeutics against Alzheimer's disease.

Chlorination of ortho-position on Polychlorinated Biphenyls Increases Protein Kinase C Activity in Neuronal Cells

  • Lee, Youn-Ju;Yang, Jae-Ho
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental pollutants. Recently, it is suggested that neurotoxic effects such as motor dysfunction and impairment in memory and learning have been associated with PCB exposure. However, structure relationship of PCB congeners with neurotoxic effects remains unknown. Since PKC signaling pathway is implicated in the modulation of motor behavior as well as learning and memory and the role of PKC are subspecies-specific, we attempted to study the effects of structurally distinct PCBs on the total PKC activity as well as subspecies of PKC in cerebellar granule cell culture model. Cells were exposed to 0, 25 and 50 ${\mu}M$ of PCB-126, PCB-169, PCB-114, PCB-157, PCB-52 and PCB-4 for 15 min. Cells were subsequently analyzed by [$^3H$] phorbol ester binding assay or immunoblotted against PKC-${\alpha}$ and -${\varepsilon}$ monoclonal antibodies. While non-dioxin-like-PCB (PCB-52 and PCB-4) induced a translocation of PKC-${\alpha}$ and -${\varepsilon}$ from cytosol to membrane fraction, dioxin-like PCBs (PCB-126, -169, -114, -157) had no effects. [$^3H$] Phorbol ester binding assay also revealed structure-dependent increase similar to translocation of PKC isozymes. While PCB-4 induced translocation of PKC-${\alpha}$ and -${\varepsilon}$ was inhibited by ROS inhibitor, the pattern of translocation was not affected in presence of AhR inhibitor. It is suggested that PCB-4-induced PKC activity may not be mediated via AhR-dependent pathway. Taken together, our findings suggest that chlorination of ortho-position in PCB may be a critical structural moiety associated with neurotoxic effects, which may be preferentially mediated via non-AhR-dependent pathway. Therefore, the present study may contribute to understanding the neurotoxic mechanism of PCBs as well as providing a basis for establishing a better neurotoxic assessment.

Effects of Long- and Short-term Consumption of Energy Drinks on Anxiety-like, Depression-like, and Cognitive Behavior in Adolescent Rats

  • Lee, Joo Hee;Lee, Jong Hyeon;Choi, You Jeong;Kim, Youn Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • Purpose: The purpose of this study was to understand the impact of long- and short-term energy drinks on anxiety-like, depressionlike, and cognitive behavior in adolescent rats. Methods: Adolescent rats (age six weeks) were randomly classified into a control group (CON), a long-term administration group (LT), and a short-term administration group (ST). The LT group was orally administered 1.5 mL/100 g (body weight) of energy drink twice daily for 14 days, the ST group was orally administered for one day, and the control group applied the same amount of normal saline. Later, an open-field test, a forced swim test, novel object recognition test, and an 8-arm radial maze test was conducted to assess the rats' anxiety, depression, and cognitive function. Results: There were different effects in the long- and short-term groups of energy drink administration. In the LT group, anxiety- and depressive-like behavior increased because of increased movement in the side corner and decrease of immobility time. Also, the time to explore novel objects decreased, and the number of correct responses was reduced, indicating a learning and memory function disorder. However, the ST group was not different from the control group. Conclusion: These results indicate that long-term consumption of energy drinks can increase anxiety-like, depression-like behavior, and this can lead to decrease in learning and memory functions. Thus, nurse and health care providers should understand the impact of energy drink consumption in adolescence to provide appropriate practices and education.

Cognitive Dysfunction and Hippocampal Damage Induced by Hypoxic-Ischemic Brain Injury and Prolonged Febrile Convulsions in Immature Rats

  • Byeon, Jung Hye;Kim, Gun-Ha;Kim, Joo Yeon;Sun, Woong;Kim, Hyun;Eun, Baik-Lin
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • Objective : Perinatal hypoxic-ischemic encephalopathy (HIE) and prolonged febrile seizures (pFS) are common neurologic problems that occur during childhood. However, there is insufficient evidence from experimental studies to conclude that pFS directly induces hippocampal injury. We studied cognitive function and histological changes in a rat model and investigated which among pFS, HIE, or a dual pathologic effect is most detrimental to the health of children. Methods : A rat model of HIE at postnatal day (PD) 7 and a pFS model at PD10 were used. Behavioral and cognitive functions were investigated by means of weekly open field tests from postnatal week (PW) 3 to PW7, and by daily testing with the Morris water maze test at PW8. Pathological changes in the hippocampus were observed in the control, pFS, HIE, and HIE+pFS groups at PW9. Results : The HIE priming group showed a seizure-prone state. The Morris water maze test revealed a decline in cognitive function in the HIE and HIE+pFS groups compared with the pFS and control groups. Additionally, the HIE and HIE+pFS groups showed significant hippocampal neuronal damage, astrogliosis, and volume loss, after maturation. The pFS alone induced minimal hippocampal neuronal damage without astrogliosis or volume loss. Conclusion : Our findings suggest that pFS alone causes no considerable memory or behavioral impairment, or cellular change. In contrast, HIE results in lasting memory impairment and neuronal damage, gliosis, and tissue loss. These findings may contribute to the understanding of the developing brain concerning conditions caused by HIE or pFS.

How predictive are temporal lobe changes of underlying TDP-43 pathology in the ALS-FTD continuum?

  • Bueno, Ana Paula Arantes;Bertoux, Maxime;de Souza, Leonardo Cruz;Hornberger, Michael
    • Annals of Clinical Neurophysiology
    • /
    • v.19 no.2
    • /
    • pp.101-112
    • /
    • 2017
  • Detection of underling proteinopathies is becoming increasingly important across neurodegenerative conditions due to upcoming disease intervention trials. In this review, we explored how temporal lobe changes in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) can potentially predict underlying TDP-43 pathology subtypes in FTD. To date, emphasis has been given to frontal lobe changes in the study of the cognitive and behavioural impairments in both syndromes but an increasing number of pathological, imaging and neuropsychological studies suggest how temporal lobe changes could critically affect the cognition and behaviour of these conditions. In this current article, we reviewed pathological, imaging as well as clinical/neuropsychological findings of temporal involvement in the ALS-FTD continuum, how they relate to temporal lobe changes and the underlying TDP-43 pathology in FTD. Findings across studies show that TDP-43 pathology occurs and coincides in many structures in ALS and FTD, but especially in the temporal lobes. In particular, anterior and medial temporal lobes atrophy is consistently found in ALS and FTD. In addition, memory and language impairment as well as emotional and Theory of Mind processing deficits that are characteristics of the two diseases are highly correlated to temporal lobe dysfunction. We conclude by showing that temporal lobe changes due to TDP-43 type B might be particular predictive of TDP-43 type B pathology in behavioural variant FTD, which clearly needs to be investigated further in the future.