• Title/Summary/Keyword: Memory allocation

Search Result 204, Processing Time 0.026 seconds

A Study on Software-based Memory Testing of Embedded System (임베디드 시스템의 소프트웨어 기반 메모리 테스팅에 관한 연구)

  • Roh, Myong-Ki;Kim, Sang-Il;Rhew, Sung-Yul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.309-312
    • /
    • 2004
  • 임베디드 시스템은 특별한 목적을 수행하기 위해 컴퓨터 하드웨어와 소프트웨어를 결합시킨 것이다. 임베디드 시스템은 일반 데스크탑보다 작은 규모의 하드웨어에서 운영된다. 임베디드 시스템은 파워, 공간, 메모리 등의 여러 가지 환경적 요소에 제약을 받는다. 그리고 임베디드 시스템은 실시간으로 동작하기 때문에 임베디드 시스템에서 소프트웨어의 실패는 일반 데스크탑에서보다 훨씬 심각한 문제를 발생시킨다. 따라서 임베디드 시스템은 주어진 자원을 효율적으로 사용하여야 하고 임베디드 시스템의 실패율을 낮춰야만 한다. 치명적인 문제를 발생시킬 수 있는 임베디드 시스템의 실패의 원인 중 하나가 메모리에 관련한 문제이다. 임베디드 시스템 특정상 메모리 문제는 크게 하드웨어 기반의 메모리 문제와 소프트웨어 기반의 메모리 문제로 분류된다. 소프트웨어 기반의 메모리에 관련한 문제는 Memory Leak, Freeing Free Memory, Freeing Unallocated Memory, Memory Allocation Failed, Late Detect Array Bounds Write, Late Detect Freed Memory Write 등과 같은 것들이 있다. 본 논문에서는 임베디드 시스템의 메모리 관련에 대한 문제점을 파악하고 관련 툴을 연구하여 그 문제점들을 효율적으로 해결할 수 있는 기법을 점증적으로 연구하고자 한다.

  • PDF

Efficient Hybrid Transactional Memory Scheme using Near-optimal Retry Computation and Sophisticated Memory Management in Multi-core Environment

  • Jang, Yeon-Woo;Kang, Moon-Hwan;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.499-509
    • /
    • 2018
  • Recently, hybrid transactional memory (HyTM) has gained much interest from researchers because it combines the advantages of hardware transactional memory (HTM) and software transactional memory (STM). To provide the concurrency control of transactions, the existing HyTM-based studies use a bloom filter. However, they fail to overcome the typical false positive errors of a bloom filter. Though the existing studies use a global lock, the efficiency of global lock-based memory allocation is significantly low in multi-core environment. In this paper, we propose an efficient hybrid transactional memory scheme using near-optimal retry computation and sophisticated memory management in order to efficiently process transactions in multi-core environment. First, we propose a near-optimal retry computation algorithm that provides an efficient HTM configuration using machine learning algorithms, according to the characteristic of a given workload. Second, we provide an efficient concurrency control for transactions in different environments by using a sophisticated bloom filter. Third, we propose a memory management scheme being optimized for the CPU cache line, in order to provide a fast transaction processing. Finally, it is shown from our performance evaluation that our HyTM scheme achieves up to 2.5 times better performance by using the Stanford transactional applications for multi-processing (STAMP) benchmarks than the state-of-the-art algorithms.

A Heuristic Algorithm of an Efficient Berth Allocation for a Public Container Terminal (공공 컨테이너 터미널의 효율적인 선석할당을 위한 발견적 알고리즘 개발에 관한 연구)

  • Keum, J.S.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.191-202
    • /
    • 1997
  • As the suitability of berth allocation will ultimately have a significant influence on the performance of a berth, a great deal of attention should be given to berth allocation. Generally, a berth allocation problem has conflicting factors between servers and users. In addition, there is uncertainty in great extent caused by various factors such as departure delay, inclement weather on route, poor handling equipment, a lack of storage space, and other factors contribute to the uncertainty of arrival and berthing time. Thus, it is necessary to establish berth allocation planning which reflects the positions of interested parties and the ambiguity of parameters. For this, a berth allocation problem is formulated by fuzzy 0-1 integer programming introducing the concept of maximum Position Shift(MPS). But, the above approach has limitations in terms of computational time and computer memory when the size of problem is increased. It also has limitations with respect to the integration of other sub-systems such as ship planning system and yard planning system. For solving such problem, this paper focuses particularly on developing an efficient heuristic algorithm as a new technique of getting an effective solution. And also the suggested algorithm is verified through the illustrative examples and empirical appalicaton to BCTOC.

  • PDF

Dynamic Memory Allocation for Scientific Workflows in Containers (컨테이너 환경에서의 과학 워크플로우를 위한 동적 메모리 할당)

  • Adufu, Theodora;Choi, Jieun;Kim, Yoonhee
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.439-448
    • /
    • 2017
  • The workloads of large high-performance computing (HPC) scientific applications are steadily becoming "bursty" due to variable resource demands throughout their execution life-cycles. However, the over-provisioning of virtual resources for optimal performance during execution remains a key challenge in the scheduling of scientific HPC applications. While over-provisioning of virtual resources guarantees peak performance of scientific application in virtualized environments, it results in increased amounts of idle resources that are unavailable for use by other applications. Herein, we proposed a memory resource reconfiguration approach that allows the quick release of idle memory resources for new applications in OS-level virtualized systems, based on the applications resource-usage pattern profile data. We deployed a scientific workflow application in Docker, a light-weight OS-level virtualized system. In the proposed approach, memory allocation is fine-tuned to containers at each stage of the workflows execution life-cycle. Thus, overall memory resource utilization is improved.

I/O Performance Analysis about Memory Allocation of the UBIFS (UBIFS 메모리 할당에 관한 I/O 성능 분석)

  • Lee, Jaekang;Oh, Sejin;Chung, Kyungho;Yun, Taejin;Ahn, Kwangseon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.9-18
    • /
    • 2013
  • Flash memory is mostly used on smart devices and embedded systems because of its nonvolatile memory, low power, quick I/O, resistant shock, and other benefits. Generally the typical file systems base on the NAND flash memory are YAFFS2, JFFS2, UBIFS, and etc. In this paper, we had variously made an experiment regarding I/O performance using our schemes and the UBIFS of the latest Linux Kernel. The proposed I/O performance analyses were classified as a sequential access and a random access. Our experiment consists of 6 cases using kmalloc(), vmalloc(), and kmem_cache(). As a result of our experiment analyses, the sequential reading and the sequential rewriting increased by 12%, 11% when the Case 2 has applied vmalloc() and kmalloc() to the UBI subsystem and the UBIFS. Also, the performance improved more by 7.82%, 6.90% than the Case 1 at the random read and the random write.

Spatial Data Structure for Efficient Representation of Very Large Sparse Volume Data for 3D Reconstruction (3차원 복원을 위한 대용량 희소 볼륨 데이터의 효율적인 저장을 위한 공간자료구조)

  • An, Jae Pung;Shin, Seungmi;Seo, Woong;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.19-29
    • /
    • 2017
  • When a fixed-sized memory allocation method is used for sparse volume data, a considerable memory space is in general wasted, which becomes more serious for a large volume of high resolution. In this paper, in order to reduce such unnecessary memory consumption, we propose a volume representation method to store mostly voxels that represent valid information rather than all voxels in a fixed volume space. Then our method is compared with the conventional static memory allocation method, an octree-based representation, and a voxel hashing method in terms of memory usage and computation speed. In particular, we compare the proposed method and the voxel hashing method with respect to implementation of the GPU-based Marching Cubes algorithm.

Real-time Task Aware Memory Allocation Techniques for Heterogeneous Mobile Multitasking Environments (이종 모바일 멀티태스킹 환경을 위한 실시간 작업 인지형 메모리 할당 기술 연구)

  • Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.43-48
    • /
    • 2022
  • Recently, due to the rapid performance improvement of smartphones and the increase in background executions of mobile apps, multitasking has become common on mobile platforms. Unlike traditional desktop and server apps, response time is important in most mobile apps as they are interactive tasks, and some apps are classified as real-time tasks with deadlines. In this paper, we discuss how to meet the requirements of heterogeneous multitasking in managing memory of real-time and interactive tasks when they are executed together on a smartphone. To do so, we analyze the memory requirement of real-time tasks, and propose a model that has the ability of allocating memory to multitasking tasks on a smartphone. Trace-driven simulations with real-world storage access traces captured by heterogeneous apps show that the proposed model provides reasonable performance for interactive tasks while guaranteeing the requirement of real-time tasks.

Reusing Local Regions in Memory-limited Java Virtual Machines (메모리가 제한적인 자바가상기계에서의 지역 재사용)

  • Kim, Tae-In;Kim, Seong-Gun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.562-571
    • /
    • 2007
  • Various researches had been devoted in purpose of improving memory management in terms of performance, efficiency, ease of use, and safety. One of these approaches is a region-based memory management. Each allocation site selects a specific region, after that allocated objects are placed in this region. Memory is reclaimed by destroying the region, freeing all the objects allocated therein. In this paper, we propose reusing of local regions to reduce heap memory usage in memory-limited environments. The basic idea of this proposal is reusing of upper local regions where objects that are allocated to these regions are not accessed until the current method is finished. We believe our method of reusing local regions is able to overcome memory constraints in memory-limited environments.

Rapid Data Allocation Technique for Multiple Memory Bank Architectures (다중 메모리 뱅크 구조를 위한 고속의 자료 할당 기법)

  • 조정훈;백윤홍;최준식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.196-198
    • /
    • 2003
  • Virtually every digital signal processors(DSPs) support on-chip multi- memory banks that allow the processor to access multiple words of data from memory in a single instruction cycle. Also, all existing fixed-point DSPs have irregular architecture of heterogeneous register which contains multiple register files that are distributed and dedicated to different sets of instructions. Although there have been several studies conducted to efficiently assign data to multi-memory banks, most of them assumed processors with relatively simple, homogeneous general-purpose resisters. Therefore, several vendor-provided compilers fer DSPs were unable to efficiently assign data to multiple data memory banks. thereby often failing to generate highly optimized code fer their machines. This paper presents an algorithm that helps the compiler to efficiently assign data to multi- memory banks. Our algorithm differs from previous work in that it assigns variables to memory banks in separate, decoupled code generation phases, instead of a single, tightly-coupled phase. The experimental results have revealed that our decoupled algorithm greatly simplifies our code generation process; thus our compiler runs extremely fast, yet generates target code that is comparable In quality to the code generated by a coupled approach

  • PDF

The Analysis of Memory Map for Improving the Execution Speed of Embedded Linux Kernel (임베디드 리눅스 커널의 실행속도 향상을 위한 메모리 맵 분석)

  • Lee, Doo-Wan;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.801-804
    • /
    • 2009
  • In this paper, the Linux kernel memory map was analyzed as the approach to Improving performance for Embedded Linux system. Since the Linux kernel memory map supporting a stability and various H/W platforms and in which it becomes to the general purpose system with optimization manages the role of being important in the booting time and the efficient system utilization of resources, the analysis of the kernel memory map is required for the performance improvement of the Embedded Linux system in which it is restrictive the resources. According to the analysis result, and of the Linux kernel memory, the booting speed of and improvement of the memory efficiency were confirmed. It is therefore considered that the proposed in this paper and kernel memory allocation method are suitable to the memory availability improvement of the Embedded Linux system.

  • PDF