• Title/Summary/Keyword: Memory Schema

Search Result 32, Processing Time 0.025 seconds

Does Brand Experience Affect Consumer's Emotional Attachments? (브랜드의 총체적 체험이 소비자-브랜드의 정서적 유대관계에 미치는 영향)

  • Lee, Jieun;Jeon, Jooeon;Yoon, Jaeyoung
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.53-81
    • /
    • 2010
  • Brand experience has received much attention from considerable marketing research. When consumers consume and use brands, they are exposed to various specific brand-related stimuli. These brand-related stimuli include brand identity and brand communications(e.g., colors, shapes, designs, slogans, mascots, brand characters) components. Brakus, Schmitt, and Zarantonello(2009) conceptualized brand experience as subjective and internal consumer responses evoked by brand-related stimuli. They demonstrated that brand experience can be broken down into four dimensions(sensory, affective, intellectual, and behavioral). Because experiences result from stimulations and lead to pleasurable outcomes, we expect consumers to want to repeat theses experiences. That is, brand experiences, stored in consumer memory, should affect brand loyalty. Consumers with positive experiences should be more likely to buy a brand again and less likely to buy an alternative brand(Fournier 1998; Oliver 1997). Brand attachment, one of dimensions of the consumer-brand relationship, is defined as an emotional bond to the specific brand(Thomson, MacInnis, and Park 2005). Brand attachment is target-specific bond between the consumer and the specific brand. Thus, strong attachment is attended by a rich set of schema that link the brand to the consumer. Previous researches propose that brand attachments should affect consumers' commitment to the brand. Brand experience differs from affective construct such as brand attachment. Brand attachment is based on interaction between a consumer and the brand. In contrast, brand experience occurs whenever there is a direct and indirect interaction with the brand. Furthermore, brand experience is not an emotional relationship concept. Brakus et al.(2009) suggest that brand experience may result in brand attachment. This study aims to distinguish brand experience dimensions and investigate the effects of brand experience on brand attachment and brand commitment. We test research problems with data from 265 customers having brand experiences in various product categories by using multiple regression and structural equation model. The empirical results can be summarized as follows. First, the paths from affective, behavior, and intellectual experience to the brand attachment were found to be positively significant whereas the effect of sensory experience to brand attachment was not supported. In the consumer literature, sensory experiences for consumers are often equated with aesthetic pleasure. Over time, these pleasure experiences can affect consumer satisfaction. However, sensory pleasures are not linked to attachment such as consumers' strong emotional bond(i.e., hot affect). These empirical results confirms the results of previous studies. Second, brand attachment including passion and connection influences brand commitment positively but affection does not influence brand commitment. In marketing context, consumers with brand attachment have intention to have a willingness to stay with the relationship. The results also imply that consumers' emotional attachment is characterized by a set of brand experience dimensions and consumers who are emotionally attached to the brand are committed. The findings of this research contribute to develop differences between brand experience and brand attachment and to provide practical implications on the brand experience management. Recently, many brand managers have focused on short-term view. According to this study, we suggest that effective brand experience management requires taking a long-term view of marketing decisions.

  • PDF

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.