• Title/Summary/Keyword: Memory Play Back

Search Result 4, Processing Time 0.02 seconds

Comparing Physiological Changes in Breathing Conditions during Cognitive Tasks (인지부하 환경에서 호흡방식이 생체신호의 변화에 미치는 영향)

  • Jung, Ju-Yeon;Lee, Yeong-Bae;Park, Hyeon-Mi;Kang, Chang-Ki
    • Science of Emotion and Sensibility
    • /
    • v.25 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • With external air pollution forcing many people indoors, new methods of facilitating healthier indoor life are necessary. This study, therefore, investigates the effects of indoor oxygen concentration and respiration methods on biosignals and cognitive ability. The study included twenty healthy subjects who inhaled air through a mask from a gas delivery system. All subjects were asked to perform three types of breathing (nasal, oral, and oral breathing with high oxygenation) and respond to cognitive stimuli (rest close eye, rest open eye, 1-back and 2-back working memory tasks). The changes in cognitive load according to respiration were analyzed by measuring response time, accuracy, and biosignals to stimuli. The result showed that, in all three respirations, heart rate significantly increased with the increase in cognitive load. Also, in oral respiration, the airway respiration rate significantly increased according to the increase in cognitive load. The change appeared to compensate for insufficient oxygen supply in oral respiration during cognitive activity. Conversely, there was no significant change in airway respiration rate during oral respiration with a high concentration oxygen supply as in nasal respiration. This result suggests that a high concentration oxygen supply might play a role in compensating for insufficient oxygen concentration or inefficient oxygen inhalation, such as oral respiration. Based on the results of this study, a follow-up study is necessary to determine the impact of changes in the autonomic nervous system, such as stress and emotions, to find out more precise and comprehensive effects of oxygen concentration and breathing type.

A Study on Development of Arc Sensor System for Automatic Multi-pass Welding of Thick Plate (후판의 자동 다층용접을 위한 아크센서 시스템 개발에 관한 연구)

  • 문현준;김종희;최주호;김형식
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.122-131
    • /
    • 1995
  • An automatic welding equipment for thick plates requires the capability of the seam tracking of the weld line which often includes misalignment of the workpiece and variation of groove width. In this study, an automatic welding equipment and control algorithms based on the arc sensor were proposed for the GMA welding of thick plates which had misalignment and gap variation. The developed system being constituted with 5 axis can be automatically controlled by computer and also automnatically set the welding conditions such as welding current, and voltage. The proposed algorithms for the seam tracking in multi-pass welding of the thick plates were constituted as follows : the detection of weaving-end point for findng the variation of groove width, the control of welding velocity for acquiring a constant thickness deposition of weld metal, and the calculation of groove width and height of an arbitrary pass in the multi-pass weld. As results of the application of the system, it was revealed that the system had a good capability in seam tracking and made an excellent weld quality in V groove butt joint.

  • PDF

Web-Based Distributed Visualization System for Large Scale Geographic Data (대용량 지형 데이터를 위한 웹 기반 분산 가시화 시스템)

  • Hwang, Gyu-Hyun;Yun, Seong-Min;Park, Sang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.835-848
    • /
    • 2011
  • In this paper, we propose a client server based distributed/parallel system to effectively visualize huge geographic data. The system consists of a web-based client GUI program and a distributed/parallel server program which runs on multiple PC clusters. To make the client program run on mobile devices as well as PCs, the graphical user interface has been designed by using JOGL, the java-based OpenGL graphics library, and sending the information about current available memory space and maximum display resolution the server can minimize the amount of tasks. PC clusters used to play the role of the server access requested geographic data from distributed disks, and properly re-sample them, then send the results back to the client. To minimize the latency happened in repeatedly access the distributed stored geography data, cache data structures have been maintained in both every nodes of the server and the client.

Energy-Performance Efficient 2-Level Data Cache Architecture for Embedded System (내장형 시스템을 위한 에너지-성능 측면에서 효율적인 2-레벨 데이터 캐쉬 구조의 설계)

  • Lee, Jong-Min;Kim, Soon-Tae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.292-303
    • /
    • 2010
  • On-chip cache memories play an important role in both performance and energy consumption points of view in resource-constrained embedded systems by filtering many off-chip memory accesses. We propose a 2-level data cache architecture with a low energy-delay product tailored for the embedded systems. The L1 data cache is small and direct-mapped, and employs a write-through policy. In contrast, the L2 data cache is set-associative and adopts a write-back policy. Consequently, the L1 data cache is accessed in one cycle and is able to provide high cache bandwidth while the L2 data cache is effective in reducing global miss rate. To reduce the penalty of high miss rate caused by the small L1 cache and power consumption of address generation, we propose an ECP(Early Cache hit Predictor) scheme. The ECP predicts if the L1 cache has the requested data using both fast address generation and L1 cache hit prediction. To reduce high energy cost of accessing the L2 data cache due to heavy write-through traffic from the write buffer laid between the two cache levels, we propose a one-way write scheme. From our simulation-based experiments using a cycle-accurate simulator and embedded benchmarks, the proposed 2-level data cache architecture shows average 3.6% and 50% improvements in overall system performance and the data cache energy consumption.