• Title/Summary/Keyword: Memory Leakage

Search Result 193, Processing Time 0.023 seconds

Design of low-power OTP memory IP and its measurement (저전력 OTP Memory IP 설계 및 측정)

  • Kim, Jung-Ho;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2541-2547
    • /
    • 2010
  • In this paper, we propose a design technique which replaces logic transistors of 1.2V with medium-voltage transistors of 3.3V having small off-leakage current in repetitive block circuits where speed is not an issue, to implement a low-power eFuse OTP memory IP in the stand-by state. In addition, we use dual-port eFuse cells reducing operational current dissipation by reducing capacitances parasitic to RWL (Read word-line) and BL (Bit-line) in the read mode. Furthermore, we propose an equivalent circuit for simulating program power injected to an eFuse from a program voltage. The layout size of the designed 512-bit eFuse OTP memory IP with a 90nm CMOS image sensor process is $342{\mu}m{\times}236{\mu}m$. It is confirmed by measurement experiments on 42 samples with a program voltage of 5V that we get a good result having 97.6 percent of program yield. Also, the minimal operational supply voltage is measured well to be 0.9V.

Memory Characteristics of 1T-DRAM Cell by Channel Structure (채널 구조에 따른 1T-DRAM Cell의 메모리 특성)

  • Jang, Ki-Hyun;Jung, Seung-Min;Park, Jin-Kwon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.96-99
    • /
    • 2012
  • We fabricated fully depleted (FD) SOI-based 1T-DRAM cells with planar channel or recessed channel and the electrical characteristics were investigated. In particular, the dependence of memory operating mode on the channel structure of 1T-DRAM cells was evaluated. As a result, the gate induced drain leakage current (GIDL) mode showed a better memory property for planar type 1T-DRAM. On the other hand, the impact ionization (II) mode is more effective for recessed type.

Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory (금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구)

  • Jungseok, Seo;Joohong, Myong;Jiye, Bang;Gyejo, Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

PCM Main Memory for Low Power Embedded System (저전력 내장형 시스템을 위한 PCM 메인 메모리)

  • Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.391-397
    • /
    • 2015
  • Nonvolatile memories in memory hierarchy have been investigated to reduce its energy consumption because nonvolatile memories consume zero leakage power in memory cells. One of the difficulties is, however, that the endurance of most nonvolatile memory technologies is much shorter than the conventional SRAM and DRAM technology. This has limited its usage to only the low levels of a memory hierarchy, e.g., disks, that is far from the CPU. In this paper, we study the use of a new type of nonvolatile memories - the Phase Change Memory (PCM) with a DRAM buffer system as the main memory. Our design reduced the total energy of a DRAM main memory of the same capacity by 80%. These results indicate that it is feasible to use PCM technology in place of DRAM in the main memory for better energy efficiency.

Memory Design for Artificial Intelligence

  • Cho, Doosan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.90-94
    • /
    • 2020
  • Artificial intelligence (AI) is software that learns large amounts of data and provides the desired results for certain patterns. In other words, learning a large amount of data is very important, and the role of memory in terms of computing systems is important. Massive data means wider bandwidth, and the design of the memory system that can provide it becomes even more important. Providing wide bandwidth in AI systems is also related to power consumption. AlphaGo, for example, consumes 170 kW of power using 1202 CPUs and 176 GPUs. Since more than 50% of the consumption of memory is usually used by system chips, a lot of investment is being made in memory technology for AI chips. MRAM, PRAM, ReRAM and Hybrid RAM are mainly studied. This study presents various memory technologies that are being studied in artificial intelligence chip design. Especially, MRAM and PRAM are commerciallized for the next generation memory. They have two significant advantages that are ultra low power consumption and nearly zero leakage power. This paper describes a comparative analysis of the four representative new memory technologies.

Soft Error Rate for High Density DRAM Cell (고집적 DRAM 셀에 대한 소프트 에러율)

  • Lee, Gyeong-Ho;Sin, Hyeong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2001
  • A soft error rate for DRAM was predicted in connection with the leakage current in cell capacitor. The charge in cell capacitor was decreased during the DRAM operation, and soft error retes due to the leakage current were calculated in various operation mode of DRAM. It was found that the soft error rate of the /bit mode was dominant with small leakage current, but as increasing the leakage current memory mode shown the dominant effect on soft error rate. Using the 256M grade DRAM structure it was predicted that the soft error rate was influenced by the change of the cell capacitance, bit line capacitance, and the input voltage sensitivity of sense amplifier, and these results can be used to the design of the optimum cells in the next generation DRAM development.

  • PDF

PinMemcheck: Pin-Based Memory Leakage Detection Tool for Mobile Device Development (PinMemcheck: 이동통신 기기 개발을 위한 Pin 기반의 메모리 오류 검출 도구(道具))

  • Jo, Kyong-Jin;Kim, Seon-Wook
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.61-68
    • /
    • 2011
  • Memory error debugging is one of the most critical processes in improving software quality. However, due to the extensive time consumed to debug, the enhancement often leads to a huge bottle neck in the development process of mobile devices. Most of the existing memory error detection tools are based on static error detection; however, the tools cannot be used in mobile devices due to their use of large working memory. Therefore, it is challenging for mobile device vendors to deliver high quality mobile devices to the market in time. In this paper, we introduce "PinMemcheck", a pin-based memory error detection tool, which detects all potential memory errors within $1.5{\times}$ execution time overhead compared with that of a baseline configuration by applying the Pin's binary instrumentation process and a simple data structure.

Flowable oxide CVD Process for Shallow Trench Isolation in Silicon Semiconductor

  • Chung, Sung-Woong;Ahn, Sang-Tae;Sohn, Hyun-Chul;Lee, Sang-Don
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • We have proposed a new shallow trench isolation (STI) process using flowable oxide (F-oxide) chemical vapor deposition (CVD) for DRAM application and it was successfully developed. The combination of F-oxide CVD and HDP CVD is thought to be the superior STI gap-filling process for next generation DRAM fabrication because F-oxide not only improves STI gap-filling capability, but also the reduced local stress by F-oxide in narrow trenches leads to decrease in junction leakage and gate induced drain leakage (GIDL) current. Finally, this process increased data retention time of DRAM compared to HDP STI. However, a serious failure occurred by symphonizing its structural dependency of deposited thickness with poor resistance against HF chemicals. It could be suppressed by reducing the flow time during F-oxide deposition. It was investigated collectively in terms of device yield. In conclusion, the combination of F-oxide and HDP oxide is the very promising technology for STI gap filling process of sub-100nm DRAM technology.

Analog Predistortion High Power Amplifier Using Novel Low Memory Matching Topology

  • Kim, Jang-Heon;Woo, Young-Yun;Cha, Jeong-Hyeon;Hong, Sung-Chul;Kim, Il-Du;Moon, Jung-Hwan;Kim, Jung-Joon;Kim, Bum-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.147-153
    • /
    • 2007
  • This paper represents an analog predistortion linearizer for the high power amplifier with low memory effect. The high power amplifier is implemented using a 90-W peak envelope power(PEP) LDMOSFET at 2.14-GHz and an envelope short matching topology is applied at the active ports to minimize the memory effect. The analog predistortion circuit comprises the fundamental path and the cuber and quintic generating circuits, whose amplitudes and phases can be controlled independently. The predistortion circuit is tested for two-tone and wide-band code division multiple access(WCDMA) 4FA signals. For the WCDMA signal, the adjacent channel leakage ratios(ACLRs) at 5 MHz offset are improved by 12.4 dB at average output powers of 36 dBm and 42 dBm.