• 제목/요약/키워드: Memory Latency

Search Result 362, Processing Time 0.017 seconds

A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems (방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구)

  • Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.459-467
    • /
    • 2009
  • Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.

Cognitive-enhancing Effects of a Fermented Milk Product, LHFM on Scopolamine-induced Amnesia (발효유 산물인 LHFM의 인지기능 개선 효과)

  • Jeon, Yong-Jin;Kim, Jun-Hyeong;Lee, Myong-Jae;Jeon, Woo-Jin;Lee, Seung-Hun;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.428-433
    • /
    • 2012
  • Probiotics and their products, such as yogurt and cheese have been widely consumed in many countries with proven health benefits including anti-microbial activity and anti-diarrheal activity. LHFM (Lactobacillus helveticus - fermented milk) is a processed skim milk powder, fermented by a probiotics, L. helveticus IDCC3801. In the present study, we aimed to investigate the neuroprotective effects and the cognitive improvements of LHFM. LHFM itself did not show any cytotoxicity to the human neuroblastoma cell line, SH-SY5Y; however, it dose-dependently protected against glutamate-induced neuronal cell death. LHFM also attenuated scopolamine-induced memory deficit in Y-maze and Morris-water maze. In the analysis of hippocampus after a behavior test, LHFM significantly increased the acetylcholine level and also inhibited acetylcholine esterase activity. Therefore, the raised acetylcholine release partially contributes to the improvement of learning and memory by a treatment with LHFM. These results suggest that LHFM is an effective material for prevention or improvement of cognitive impairments caused by neuronal cell damage and central cholinergic dysfunction.