• Title/Summary/Keyword: Memory Cell

Search Result 839, Processing Time 0.025 seconds

A Design Method of a Completion Signal Generation Circuit of Memory for Asynchronous System (비동기식 시스템을 위한 메모리의 동작 완료 신호 생성 회로)

  • 서준영;이제훈;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.105-113
    • /
    • 2004
  • This paper presents a design method for an asynchronous memory with a completion signal generation circuit meeting D-I model. The proposed design method is to generates a completion signal with dummy cell and a completion signal generation circuit to indicate completion of the required read or write operation to the processor. Dividing a memory exponentially to consider delay of a bit-line and a memory cell makes memory operates as a D-I model with minimum addition of redundant circuit. The proposed memory partitioning algorithm that divides entire memory into the several partitions with a exponentially increased size reduces the memory access delay by 40% compared with a conventional partitioning method to the same size.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

The Effects of Rhododendron simsii Planch(RSP) on the Alzheimer's Disease Model (두견화(杜鵑花)가 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Jang, Jin-Sil;Lee, Sang-Ryong;Jung, In-Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.2
    • /
    • pp.75-89
    • /
    • 2006
  • Objective : This experiment was designed to investigate the effect of Rhododendron simsii Planch(RSP) on the Alzheimer's disease. Method : The effects of RSP on amyloid precursor proteins(APP), acetylcholinesterase (AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by amyloid ${\beta}$ protein$(A{\beta})$ and $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA of THP-1 cell treated by lipopolysaccharide(LPS), AChE activity of PC-12 cell lysate treated by $A{\beta}$ and behavior of the memory deficit mice induced by scopolamine, and glucose, AChE in serum of the memory deficit mice induced by scopolamine were investigated, respectively. Result : 1. RSP suppressed APP, AChE, GFAP mRNA in PC-12 celt treated by $A{\beta}$. 2. RSP suppressed $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA in THP-1 cell treated by LPS. 3. RSP suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. RSP increased glucose and decreased AChE significantly in the serum of the memory deficit mice induced by scopolamine. 5. RSP group showed significantly inhibitory effect on the scopolamine-induced impairment of teaming and. memory in the experiment of Morris water maze. Conclusion : According to the above results, it is suggested that RSP might be usefully applied for prevention and treatment of Alzheimer's disease and memory deficit symptom.

  • PDF

The Effects of Coptis japonica Makino(CJM) Extract on the Alzheimer's Disease Model (일황련(日黃連)이 치과병태(痴果病態)모델에 미치는 영향(影響))

  • Jung, In-Chul;Lee, Sang-Ryong;Park, Ji-Un
    • Journal of Oriental Neuropsychiatry
    • /
    • v.15 no.1
    • /
    • pp.87-99
    • /
    • 2004
  • This experiment was designed to investigate the effect of Coptis japonica Makino(CJM) on the Alzheimer's disease. The effects of CJM extract on $IL-1{\beta}$, IL-6, amyloid precursor proteins (APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ and AChE activity of PC-12 cell lysate treated by $A{\beta}$ plus $rIL-1{\beta}$ and behavior of memory deficit rats induced by scopolamine and mice glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine were investigated, respectively. The results were summarized as follows ; 1. CJM extract suppressed $IL-1{\beta}$, IL-6 mRNA in PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ 2. CJM extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ 3. CJM extract suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ 4. CJM extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. 5. CJM extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. According to the above results, it is suggested that CJM extract might be usefully applied for prevention and treatment of Alzheimer's disease and memory deficit symptom.

  • PDF

Fringe Field Effects on Transient Characteristics of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

  • Han, Boram;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.609-614
    • /
    • 2014
  • The fringe field effects on the transient characteristics of nano-electromechanical (NEM) memory cells have been discussed by using an analytical model. The influence of fringe field becomes stronger as the size of a cell decreases. By using the proposed model, the dependency of NEM memory transient characteristics on cell parameters has been evaluated.

High Speed Parallel Fault Detection Design for SRAM on Display Panel

  • Jeong, Kyu-Ho;You, Jae-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.806-809
    • /
    • 2007
  • SRAM cell array and peripheral circuits on display panel are designed using LTPS process. To overcome low yield of SOP, high speed parallel fault detection circuitry for memory cells is designed at local I/O lines with minimal overhead for efficient memory cell redundancy replacement. Normal read/write and parallel test read/write are simulated and verified.

  • PDF

Spatial Distribution of Localized Charge Carriers in SONOS Memory Cells

  • Kim Byung-Cheul
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.84-87
    • /
    • 2006
  • Lateral distributions of locally injected electrons and holes in an oxide-nitride-oxide (ONO) dielectric stack of two different silicon-oxide-nitride-oxide-silicon (SONOS) memory cells are evaluated by single-junction charge pumping technique. Spatial distribution of electrons injected by channel hot electron (CHE) for programming is limited to length of the ONO region in a locally ONO stacked cell, while is spread widely along with channel in a fully ONO stacked cell. Hot-holes generated by band-to-band tunneling for erasing are trapped into the oxide as well as the ONO stack in the locally ONO stacked cell.

Location-Aware Hybrid SLC/MLC Management for Compressed Phase-Change Memory Systems (압축 기반 상변화 메모리 시스템에서 저장 위치를 고려한 하이브리드 SLC/MLC 관리 기법)

  • Park, Jaehyun;Lee, Hyung Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Density of Phase-Change Memory (PCM) devices has been doubled through the employment of multi-level cell (MLC) technology. However, this doubled-capacity comes in the expense of severe performance degradation, as compared to the conventional single-level cell (SLC) PCM. This negative effect on the performance of the MLC PCM detracts from the potential benefits of the MLC PCM. This paper introduces an efficient way of minimizing the performance degradation while maximizing the capacity benefits of the MLC PCM. To this end, we propose a location-aware hybrid management of SLC and MLC in compressed PCM main memory systems. Our trace-driven simulations using real application workloads demonstrate that the proposed technique enhances the performance and energy consumption by 45.1% and 46.5%, respectively, on the average, over the conventional technique that only uses a MLC PCM.

The Kinetics of Secondary Response of Antigen-Specific $CD4^+$ T Cells Primed in vitro with Antigen (실험적으로 항원에 의하여 일차 자극된 $CD4^+$ T 세포의 이차 면역 반응의 분석)

  • Park, Seong-Ok;Han, Young-Woo;Aleyas, Abi George;George, June Abi;Yoon, Hyun-A;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.93-101
    • /
    • 2006
  • Background: Memory T lymphocytes of the immune system provide long-term protection in response to bacterial or viral infections/immunization. Ag concentration has also been postulated to be important in determining whether T cell differentiation favors effector versus memory cell development. In the present study we hypothesized that naive Ag-specific $CD4^+$ T cells briefly stimulated with different Ag doses at the primary exposure could affect establishment of memory cell pool after secondary immunization. Methods: To assess this hypothesis, the response kinetics of DO11.10 TCR $CD4^+$ T cells primed with different Ag doses in vitro was measured after adoptive transfer to naive BALB/c mice. Results: Maximum expansion was shown in cells primarily stimulated with high doses of ovalbumin peptide $(OVA_{323-339})$, whereas cells in vitro stimulated with low dose were expanded slightly after in vivo secondary exposure. However, the cells primed with low $OVA_{323-339}$ peptide dose showed least contraction and established higher number of memory cells than other treated groups. When the cell division was analyzed after adoptive transfer, the high dose Ag-stimulated donor cells have undergone seven rounds of cell division at 3 days post-adoptive transfer. However, there was very few division in naive and low dose of peptide-treated group. Conclusion: These results suggest that primary stimulation with a low dose of Ag leads to better memory $CD4^+$ T cell generation after secondary immunization. Therefore, these facts imply that optimally primed $CD4^+$ T cells is necessary to support effective memory pool following administration of booster dose in prime-boost vaccination.