• 제목/요약/키워드: Membrane vesicles

검색결과 285건 처리시간 0.025초

Interaction Between Barbiturate and Membrane Components

  • Yu, Byung-Sul;Jo, Seong-Bong;Kim, Chong-Kook;Hwang, Young-Sik
    • Archives of Pharmacal Research
    • /
    • 제13권3호
    • /
    • pp.246-251
    • /
    • 1990
  • Intermolecular interaction between barbiturates and membrane components such as phospholipid and cholesterol were investigated on $^1$H-NMR spectra and infrared spectra. According to previous reports, barbiturates interacted with phospholipid through intermolecular hydrogen bonds. We also investigated thi observation using dipalmitoyl-phosphatidylcholine (DPPC) as phospholipid in deuterochloroform, and characterized quantitatively. Also, the observed drug could interact with cholesterol which is one of the major components of biomembranes through hydrogen bonds. It was the carbonyl groups of barbiturate and the hydroxyl group of cholesterol that formed hydrogen bond complex. In addition to spectroscopic studies, we investigated the direct effect of phenobarbital on lipid multibilayer vesicles, whose compositions were varied, by calorimetric method. Phenobarbital caused a reduction in the temperature of phase transition of vesicles. These studies may provided a basis for interpreting the mode of action of barbiturates.

  • PDF

가토 근위세뇨관 Basolateral Membrane Vesicle에서 Succinate 이동 특성 (Succinate Transport in Rabbit Renal Basolateral Membrane Vesicles)

  • 김용근;배혜란;임병용
    • The Korean Journal of Physiology
    • /
    • 제22권2호
    • /
    • pp.307-318
    • /
    • 1988
  • 가토 신장 피질에서 Percoll density gradient방법으로 분리한 basolateral membrane vesicle (BLMV)에서 rapid filtration technique을 이용하여 succinate의 이동 특성을 관찰하였다. $Na^+$은 succinate의 이동을 증가시켜 "overshoot"현상을 보였으며 이러한 효과는 $K^+,{\;}Li^+,{\;}Rb^+,{\;}choline$과 같은 다른 양이온들에 의해 나타나지 않았다. $Na^+$농도변화에 따른 succinate의 이동율은 sigmoid모양을 보였고, $Na^+$에 대한 Hill coefficient는 2.0이었다. soccinate의 이동은 vesicle 내부가 음전압일 때 더욱 증가되었다. BLMV에서 succinate이동은 용액내 pH변화에 따라 영향을 받았으나 brush border membrane vesicle (BBMV)에서는 영향을 받지 않았다. 동력학적 분석결과 succinate의 Km값은 $15.5{\pm}0.94{\;}{\mu}M$이었고 Vmax는 $16.22{\pm}0.25{\;}n{\;}mole/mg{\;}protein/min$이었다. succinate의 이동은 $4{\sim}5$탄소를 가진 dicarboxylate들에 의해 강력하게 억제되었으나 monocarboxylate나 다른 유기음이온들에 의해 영향을 적게 받거나 받지 않았다. succinate의 이동은 DIDS, SITS, furosemide와 같은 음이온 이동 억제제와 harmaline과 같은 $Na^+$ 이동 억제제에 의해 억제되었다. 이들 결과들은 BLMV에서 succinate는 $Na^+$에 의존하여 이동하며 다른 Krebs cycle중간 산물들과 동일한 운반기전을 이용함을 가르킨다. 또한 BLMV에서 succinate의 이동은 그 기질특이성에 있어서 다른 연구자에 의해 보고된 BBMV에서 이동특성과 유사함을 보였다.

  • PDF

The Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae

  • Zou, Shenshen;Sun, Dan;Liang, Yongheng
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.643-654
    • /
    • 2017
  • Autophagy is a degradation pathway in eukaryotic cells in which aging proteins and organelles are sequestered into double-membrane vesicles, termed autophagosomes, which fuse with vacuoles to hydrolyze cargo. The key step in autophagy is the formation of autophagosomes, which requires different kinds of vesicles, including COPII vesicles and Atg9-containing vesicles, to transport lipid double-membranes to the phagophore assembly site (PAS). In yeast, the cis-Golgi localized t-SNARE protein Sed5 plays a role in endoplasmic reticulum (ER)-Golgi and intra-Golgi vesicular transport. We report that during autophagy, sed5-1 mutant cells could not properly transport Atg8 to the PAS, resulting in multiple Atg8 dots being dispersed into the cytoplasm. Some dots were trapped in the Golgi apparatus. Sed5 regulates the anterograde trafficking of Atg9-containing vesicles to the PAS by participating in the localization of Atg23 and Atg27 to the Golgi apparatus. Furthermore, we found that overexpression of SFT1 or SFT2 (suppressor of sed5 ts) rescued the autophagy defects in sed5-1 mutant cells. Our data suggest that Sed5 plays a novel role in autophagy, by regulating the formation of Atg9-containing vesicles in the Golgi apparatus, and the genetic interaction between Sft1/2 and Sed5 is essential for autophagy.

Effect of Ginseng Saponin on the $Na^{+}$, $K^{+}$-ATPase of Dog Cardiac Sarcolemma

  • Lee, Shin-Woong;Lee, Jeung-Soo;Kim, Young-Hie;Jin, Kap-Duck
    • Archives of Pharmacal Research
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 1986
  • The effects of ginseng saponins on the sarcolemmal $Na^{+}$, $K^{+}$-ATPase were compared to gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 to elucidate whether the effects are due to the membrane distruption, using a highly enriched preparation of cardiac sarcolemma prepared from dog ventricular myocardium. About 26% and 29% of vesicles in the preparation, enriched in ouabain-sensitive $Na^{+}$, $K^{+}$-ATP ase, $\beta$-adrenergic and muscarinic receptors are rightside-out and inside-out orientation, respectively. Ginseng saponins (triol>total> diol) inhibited $Na^{+}$, $K^{+}$-ATP ase activity, $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H]ouabain binding of sarcolemmal vesicles. However, gypsophila saponin, SDS (0.4$\mu$g/$\mu$g protein) and Triton X-100 (0.6 $\mu$g/$\mu$g protein) caused about 1.35 and 1.40-fold increase in $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H] oubain binding, respectively. Especially, the activating effect of gypsophila saponin on membrane Na+, K+ ATPase was detected at gypsophila saponin to sarcolemmal protein ratios as high as 100. Low dose of ginseng saponin (3$\mu$g/$\mu$g protein) decreased the phosphorylation sites and the concentration of ouabain binding sites (Bmax) without affecting the turnover number and affinity for ouabain binding, while gypsophila saponin, SDS(0.4 ug/ug protein), ahd Triton X-100 (0.6$\mu$g/$\mu$g protein) increased the Bmax. The results suggest that ginseng saponins cause a decrease in the number of active sites by interacting directly with $Na^{+}$, $K^{+}$-ATPase before disruption of membrane barriers of sarcolemmal vesicles.

  • PDF

Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

  • Lim, Hyoun-Sub;Lee, Mi Yeon;Moon, Jae Sun;Moon, Jung-Kyung;Yu, Yong-Man;Cho, In Sook;Bae, Hanhong;DeBoer, Matt;Ju, Hojong;Hammond, John;Jackson, Andrew O.
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.17-30
    • /
    • 2013
  • Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treat-ments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

Different Mode of Cytochrome c and Apocytochrome c Interations with Phospholipid Bilayer

  • Seungcheol Lee;Hyoungman Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권2호
    • /
    • pp.131-134
    • /
    • 1990
  • Cytochrome c induces fusion of phosphatidylserine /phosphatidylethanolamine vesicles while apocytochrome c does not have a fusogenic capability despite the fact that the apoprotein binds to the vesicles more extensively. In order to see whether the difference in the fusogenic behavior comes from the topological variation in membrane bound proteins, the holoprotein and apoprotein were labeled with phenylisothiocyanate, a hydrophobic label, in the presence of its hydrophilic analogue p-sulfophenylisothiocyanate. Apocytochrome c was labeled with the hydrophobic probe more extensively than the cytochrome c, indicating that the apoprotein penetrates deeper into the bilayer than cytochrome c does. The translocation experiments of these proteins by trypsin entrapped vesicles further supported this conclusion.

수종 약물이 리포솜 지질막의 안정성에 미치는 영향 (Effects of Drugs on the Stability of Phospholipid Liposomal Membranes)

  • 김민;한석규;김종국
    • 약학회지
    • /
    • 제38권6호
    • /
    • pp.637-645
    • /
    • 1994
  • The effect of various drugs on the stability of the liposomal membrane of phosphatidylcholine and cholesterol was studied, employing the fluorescence self-quenching method. Calcein was entrapped into the phospholipid small unilamellar vesicles and the leakage of the fluorescence probe was monitored on adding the drug to the system. The results of the experiments showed that phenothiazine derivatives, some potent local anesthetics and surface active agents were very effective in inducing the leakage of calcein from the liposome. The leakage-inducing activity of these drug substances has been ascribed to their surface activity and the perturbation of the liposomal membrane by these substances. On the other hand drug substance with low surface activity or without amphiphilic moieties did not show any effect or only small effect on the leakage of calcein from the liposomes. The effect of lipid concentration on the stability of the liposomes was also investigated to show that the higher concentrations of lipid more drug was required to induce the leakage. The effect of surface charges of vesicles was also studied, and the results showed that the charge on the liposomes enhanced the stability of the liposomes against the leakage-inducing activity of these drug substances.

  • PDF

Effects of Parathyroid Hormone on the Fluidity of the Plasma Membrane Vesicles of Cultured Osteoblasts

  • Kang, Jung-Sook
    • Journal of Photoscience
    • /
    • 제8권3_4호
    • /
    • pp.87-92
    • /
    • 2001
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to investigate the effects of parathyroid hormone (PTH) on the bulk bilayer fluidity of the plasma membrane vesicles isolated from cultured osteoblasts (OB-PMV). In a dose-dependent manner, rat PTH-(1-34) [rPTH-(1-34)] increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py and decreased the anisotropy (r) of DPH in OB-PMV. This indicates that PTH increased both the lateral and rotational diffusion of the probes in OB-PMY. Selective quenching of DPH fluorescence by trinitrophenyl groups was utilized to examine the transbilayer fluidity asymmetry of OB-PMV. The anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.024, 0.032, and 0.062 greater than calculated for the outer monolayer of OB-PMY. Selective quenching of DPH fluorescence by trinitrophenyl groups was also utilized to examine the transbilayer effects of PTH on the fluidity of OB-PMV. rPTH-(1-34) had a greater fluidizing effect on the outer monolayer as compared to the inner monolayer of OB-PMV. Thus, it has been proven that PTH exhibits a selective rather than nonselective fluidizing effect within transbilayer domains of OB-PMV.

  • PDF

소의 대뇌피질로부터 분리된 Synaptosomal Plasma Membrane Vesicle에서의 n-Alkanols의 침투정도 (The Penetration Site of n-Alkanols into Synatosomal Plasma Membrane Vesicles Isolated from Bovine Cerebral Cortex)

  • 김인세;권재영;백승완;정규섭
    • The Korean Journal of Pain
    • /
    • 제6권2호
    • /
    • pp.237-246
    • /
    • 1993
  • 세포막에서 마취제의 작용점을 규명하기 위하여, 마취제의 많은 부분을 차지하는 n-Alkanol을 이용하여, 소의 synaptosomal plasma membrane vesicles(SPMV)에서 n-Alkanol의 침투 정도를 형광 probe를 이용한 형광소광법을 통하여 검색하였다. n-Alkanols는 SPMV 외부 단층(outer monolayer)의 표면에 주로 분포하되 그 탄소수에 비례하여 소수성 부위에 분포되는 양이 증가되는 경향을 나타내었다(1-decanol은 제외). Methanol, Ethanol, 1-propanol, 1-butanol, 1-pentano, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol 및 1-decanil은 SPMV 외부 단층의 표면(친수성 부위)에 분포되는 것에 비하여 각각 949, 416.8, 214.8, 90.3, 53.7, 15.20, 6.80, 2.00, 1.03 및 2.40 배가 된다는 것을 확인하였다. 1-decanol은 $C_{10}$인데도 불구하고 $C_8$인 1-octanol에 비하여 적은 양이 소수성 부위에 침투 분포한다는 것이 확인되었다.

  • PDF