• Title/Summary/Keyword: Membrane reactor

Search Result 318, Processing Time 0.023 seconds

The Operation of Polymer Electrolyte Membrane Fuel Cell using Hydrogen Produced from the Combined Methanol Reforming Process

  • Park, Sang Sun;Jeon, Yukwon;Park, Jong-Man;Kim, Hyeseon;Choi, Sung Won;Kim, Hasuck;Shul, Yong-Gun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.146-152
    • /
    • 2016
  • A combined system with PEMFC and reformer is introduced and optimized for the real use of this kind of system in the future. The hydrogen source to operate the PEMFC system is methanol, which needs two parts of methanol reforming reaction and preferential oxidation (PROX) for the hydrogen fuel process in the combined operation PEMFC system. With the optimized methanol steam reforming condition, we tested PROX reactions in various operation temperature from 170 to 270 ℃ to investigate CO concentration data in the reformed gases. Using these different CO concentration, PEMFC performances are achieved at the combined system. Pt/C and Ru promoted Pt/C were catalysts were used for the anode to compare the stability in CO contained gases. The alloy catalyst of PtRu/C shows higher performance and better resistance to CO than the Pt/C at even high CO amount of 200 ppm, indicating a promotion not only to the activity but also to the CO tolerance. Furthermore, in a system point of view, there is a fluctuation in the PEMFC operation due to the unstable fuel supply. Therefore, we also modified the methanol reforming by a scaled up reactor and pressurization to produce steady operation of PEMFC. The optimized system with the methanol reformer and PEMFC shows a stable performance for a long time, which is providing a valuable data for the PEMFC commercialization.

Synthesis and Characterization of Dense Ceramic Membranes for Methane Conversion - Part II

  • Santos, A.;Fontes, V.A.;Fontes, F.A.Oliveira;De Sousa, J.F.;De Souza, C.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1112-1113
    • /
    • 2006
  • The perovskite- type oxide $(ABO_3)$ containing transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed-conductivity oxides are promising materials for oxygen permeating membranes. The main objective of this research work is to synthesize and characterization ceramic powders of the Sr-Co-Fe-O system for methane conversion using membrane reactor. SCFO powders were synthesized from the route was based on the complex method of combination of acid EDTA and citrate and shown be available by control efficient of synthesis to performed $SrCo_{0.8}Fe_{0.2}O_{3-\delta$, moreover, it presented easy implementation, reproducibility and operation. Powder ceramic was characterized by XRD, microscopic optic, SEM and TG-DTA.

  • PDF

Evaluation of Performance and Economical Efficiency of the Advanced Wastewater Treatment System (고도(高度) 하수처리(下水處理) 시스템의 처리성능 및 경제성 평가에 관한 연구)

  • Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • For a high-rate fermentation and recovery of organic acid, we have developed a new organic acid fermentation reactor with membrane filter, which is the most important part in the new advanced wastewater treatment system. The recovered organic acid is to be reused as an organic carbon source at denitrification process. Some experiments were conducted to compare the performance of acid fermentation at different SRTs, such as 5, 10, and 20 days. The total organic acid concentration produced during the runs was in the range of 2,100-2,900 (mgC/L). The conversion efficiency from substrate to organic acid reached to from 43% to 59%. The recovery rate of organic acid from substrate based on TOC was from 26% to 53%. Regardless of operational conditions, it has been able to maintain the membrane flux constantly, in the range of 0.4-0.46 ($m^3/m^2/day$). The transmembrane pressure drop was 0.2-0.3 (kg/cm) for 100 day's operation. The result of simulation is as follows. Organic removal efficiency of the new advanced treatment system is 95%. 73% of Nitrogen is removed. The removal efficiency of Phosphorus is 93%. By coqulation, soluble phosphorus is able to remove from the water treatment lines, which is impossible at conventional activated sludge system. The unit construction cost is 65000 (yen/m3) and it was 1.4 times than that of the standard activated sludge system. The unit operation cast is 7.7 ($yen/m^3/day$) and it was 1.3 times than that of the standard activated sludge system.

  • PDF

The Effect of Oxygen Supply on the Production of Citric Acid from Encapsulated Aspergillus niger (산소공급이 캡슐고정화 Aspergillus niger의 구연산 생산에 미치는 영향)

  • Park, Joong-Kon;Jeong, Geung-Sik
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.672-676
    • /
    • 1999
  • Encapsulated Aspergillus niger was prepared in order to inspect the effect of oxygen supply on the production of citric acid. A. niger cells which had been immobilized in the calcium alginate capsule grew and mycellia penetrated through the capsule membrane after two days of cultivation and covered over all of the capsule after eight days. The mycellia became loose when the nitrogen source was sufficient of oxygen was deficient. The larger amount of encapsulated cells were put into a given growth medium, the smaller quantity of citric acid was produced. The increase of volumetric oxygen transfer coefficient from 1.8 $hr^-$ to 2.55 $hr^-$ in the flask culture accelerated cell growth rate but did not influence the production of citric acid. The high oxygen supply rate($k_La:\;150\;hr^-$) in the concentric air lift reactor hastened the growth of cells and hindered the production of the citric acid. The reduction of nitrogen source level in the growth medium in the concentric air lift reactor increased citric acid production by 40 percent of that of flask cultivation and the culture period was shortened by 3 days. The variation of the geometry of the concentric air lift reactor did not influence the growth rate of encapsulated cells and production rate of citric acid.

  • PDF

Stress Corrosion Cracking Susceptibility Evaluation by Small Punch Test (소형펀치시험법에 의한 응력부식균열 감수성평가에 관한 연구)

  • 유효선;이송인;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2033-2042
    • /
    • 1993
  • In conventional SCC susceptibility test, there are constant strain test, constant load test, slow strain rate test(SSRT) and K$_{ISCC}$ test. Among them, the SSRT method is much more aggressive in producing SCC than the other tests, so that the test time of it is considerably reduced. But this SSRT method has mostly been worked using the uniaxial tensile specimen untill now. Therefore, the SSRT method using the tensile specimen(Ten-SSRT) has much difficulty in SCC susceptibility evaluation of a localized region like weldment and the advantage material of high order. Recentely, the small punch(SP) test method using miniaturized small specimen is the very effective test method for fracture strength evaluation of a localized region like weldment and fusion reactor wall irradiated in the nuclear power plant. This paper investigated the possibility of SCC susceptibility evaluation by the SP-SSRT method using the miniaturized small specimen. Therefore, we obtained the result that the SP-SSRT had the possibility for the evaluations of SCC susceptibility for shorter time to corrosive environment compare to Ten-SSRT which was conventional method.

Analysis of Characteristics of Coupled Phosphorus in the Sewage (하수 중 인의 결합 특성 분석)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.97-102
    • /
    • 2007
  • The present investigation deals to achieve an accurate determination of the phosphorous present in the wastewater samples using the membrane reactor. The study may enable to quantify the dissolved (DP) and adsorbed phosphorous (AP), also the adsorbed phosphorous categorically identified as inorganic coupled phosphorous (DRP) and organic coupled phosphorous (NRP). Moreover, the study has been conducted separately in anaerobic and aerobic chamber. The results obtained showed that dissolved phosphorous only can occur in anaerobic chamber with ca. 25%. The study conducted for adsorbed phosphorous showed that the DRP has the percent composition in anaerobic and aerobic chamber respectively 33% and 40% i.e., 7% more in aerobic chamber. The similar values obtained for NRP was found to be 42% and 60% i.e., 18% more in aerobic chamber. On the other hand while comparing the results for NRP and DRP, it has to be noted that NRP has 9% and 20% more percent composition than DRP respectively in anaerobic and aerobic chamber. Further, the adsorbed phase showed the species Al-P, Fe-P in the aerobic chamber with the quotient of 7.73 mg/g TS (total solid) whereas in the anaerobic chamber it showed the species Fe-P and $Fe(OH)_3$-P with the 7.16 mg/g TS.

Automatic T-P Coagulation Control System using an EC in the MSBR Process - Full Scale Study - (MSBR 공정에서 전기전도도를 이용한 인 제거 자동제어시스템 - 현장 적용 중심 -)

  • Jang, Hee-seon;Lee, Ho-sik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2017
  • Many sewage treatment plants have applied the advanced technology of chemical coagulant system to remove phosporus in Korea. However there are some problems for the injection of optimum coagulant dosage. In order to solve these problems, the research related to the more cost-effective automatic total phosphorus coagulation control system using an EC(Electrical Conductivity) have been in progress. This study was conducted by the same process and operation method as the Lab-scale for public small town sewage treatment plant. First, it confirmed the correlation among the EC, PO4-P and coagulant dosage in the Lab-scale MSBR(Membrane Sequencing Batch Reactor) process. Next, it analyzed that correlation coefficient of EC and the coagulant dosage was 0.92 in the Full-scale MSBR process. As a result, not only T-P removal efficiency was doubled but also it satisfied the effluent water quality standard in a stable manner. In addition, by applying the automatic control system using the EC, compared to the fixed coagulant injection system the coagulant dosage could be reduced by 28%.

Temperature Dependence of the Deposition Behavior of Yttria-stabilized Zirconia CVD Films: Approach by Charged Cluster Model

  • Hwang, Nong-Moon;Jeon, In-Deok;Latifa Gueroudji;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.218-224
    • /
    • 2001
  • Yttria-stabilized zirconia (YSZ) films were deposited with varying temperatures of ZrCl$_4$between 250~55$0^{\circ}C$ with YCl$_3$and the substrate at 100$0^{\circ}C$. Nanoamperes per square centimeter of the electric current were measured in the reactor during deposition and the current increased with increasing evaporation temperature of ZrCl$_4$. The zirconia nanometer size clusters were captured on the grid membrane near the substrate during the CVD process and observed by transmission electron microscopy (TEM). The deposition rate decreased with increasing evaporation temperature of ZrCl$_4$. A cauliflower-shaped structure was developed at 25$0^{\circ}C$ then gradually changed to a faceted-grain structure above 35$0^{\circ}C$. Dependence of the growth rate and the morphological evolution on the evaporation temperature of ZrCl$_4$was approached by the charged cluster model.

  • PDF

Isolation and Identification of Photosynthetic Bacterium Useful for Wastewater Treatment

  • Choi, Han-Pil;Kang, Hyun-Jun;Seo, Ho-Chan;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.643-648
    • /
    • 2002
  • For wastewater treatment and utilization of the biomass, a photosynthetic bacterium was isolated based on its cell growth rate, cell mass, and assimilating ability of organic acids. The isolate was a Gram-negative rod-shaped bacterium that contained a single polar flagellum and formed a lamellar intracytoplasmic membrane (ICM) system, including bacteriochlorophyll $\alpha$. The major isoprenoid quinone component was identified as ubiquinone Q-10, and the fatty acid composition was characterized as to contain relatively large amount of C-16:0 (18.74%) and C-18:1 (59.23%). Based on its morphology, phototrophic properties, quinone component, and fatty acid composition, the isolate appeared to be closely related to the Rhodopseudomonas subgroup of purple nonsulfur bacteria. A phylogenetic analysis of the isolate using its 16S rRNA gene sequence data also supported the phenotypic findings, and classified the isolate closely related to Rhodopseudomonas palustris. Accordingly, the nomenclature of the isolate was proposed as Rhodopseudomonas palustris KUGB306. A bench-scale photosynthetic bacteria (PSB) reactor using the isolate was designed and operated for the treatment of soybean curd wastewater.

Application of upflow multi-layer bioreactor (UMBR) for domestic wastewater treatment in HCMC

  • Cao, Duc Hung;Nguyen, Ngoc Han;Nguyen, Phuoc Dan;Bui, Xuan Thanh;Kwon, J.C.;Shin, H.S.;Lee, E.T.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Up-flow multi-layer bioreactor (UMBR) is a hybrid system using dual sludge that consists of an up-flow multi-layer bioreactor as anaerobic/anoxic suspended growth microorganisms followed by an aeration tank. The UMBR acts as a primary settling tank, anaerobic/anoxic reactor, thickener which requires low energy due to mixing by up-flow stream. This study focused on using a pilot UMBR plant with capacity of 20-30 $m^3$/day for domestic wastewater in HCMC. HRTs of UMBR and aeration tank were 4.8 h and 7.2 h, respectively. The average MLSS of UMBR ranged from 10,000-13,600 mg/l SS. Internal recycle rate and sludge return were 200-300% and 150-200%, respectively. The results obtained from this study at flow rate of 20 $m^3$/day showed that removal of COD, SS, TKN, N-$NH_4$, T-N, and color were 91%, 87%, 86%, 80%, 91% and 91%, respectively.