• Title/Summary/Keyword: Membrane properties

Search Result 1,541, Processing Time 0.023 seconds

Hydrogen Separation from Binary and Quaternary Gas Mixtures Using Organic Templating Silica Membrane (유기템플레이팅 실리카막을 이용한 이성분 및 사성분 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Chung, Jong-Tae;Lee, Jae-Wook;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.9-12
    • /
    • 2007
  • The transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using four binary and one quaternary hydrogen mixtures through permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical studies, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust gas model) were adapted to unsteady-state material balance.

  • PDF

On the drying out of bipolar membranes

  • Kedem, Ora;Ghermandi, Andrea;Messalem, Rami
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.215-222
    • /
    • 2013
  • The maximum current density that can be achieved in bipolar membrane electrodialysis is limited by the sharp increase in resistance that is experienced when the water content at the membrane interface is not adequately replenished and the membranes dry out. In this paper we show how the water content near the interface depends on the properties of the membranes. A water retaining parameter is introduced, which characterizes the thermodynamic properties of the membrane material and may be used to guide the choice of polymers for mitigation of the dry-out problem.

Prepartion and Microstructure Changes with Swelling of Polyion Complex membranes Based on the K-Carrageenan

  • Jegal, Jonggeon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.61-62
    • /
    • 1994
  • In order to prepare polyion complex membranes useful for the separation of water-alcohol by pervaporation, k-carrageenan containing artionic sulfate groups in the backbone and good hydrophilicity was selected for the polyanion membrane material and poly{1,3-bis[4-butyl pyridinium] propane. bromide}, one of the polycations synthesized in our lab and containing cationic pyridinium groups., was used. The polyion complex membranes were prepared by the ion complex formation between kcarrageenan films and poly{1,3-bis[4-butyl pyridinium] propane. bromide}. On the formation process of polyion complex membranes, the way of potyion complex formation was carefully studied. In order to study the effect of the morphology on the permeation properties of the polyion complex membranes, which is one of the important factors affecting on the permeation properties of membranes but rarely studied, the microstructure behaviors of the polyion complex mem6ranes in methanol-water mixtures with different compositions Were also studied with x-ray diffractometry and polarizing microscopy.

  • PDF

Determination of Low-temperature Electrochemical Properties of Selected Cation-exchange Membranes for Cathodic Protection Analysis

  • Ko, Moon-Young;Kwon, Byeong-Min;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2008
  • The electrochemical properties of Nafion type membranes as a function of temperature to examine the key factors affecting the cathodic protection process at low temperatures was investigated in this study. Variable temperature experiments for AC impedance, DC resistance were conducted. The resistances of 3 Nafion membranes (N 324, N 450, N MAC) were measured in 30% KOH (aq) for a range of temperatures between $-30^{\circ}C$ and room temperature. Membrane resistance increases exponentially with decreasing temperature. This behaviour is most significant at operational temperatures below $0^{\circ}C$. These membranes are stable under the low temperature and caustic conditions of the heat exchange system, but they place a much higher restriction on the cathodic protection of the stainless heat exchange stack. N 450 has the lowest AC impedence and DC resistance at temperatures below $0^{\circ}C$ and consequently is most suitable membrane of the three, for low temperature applications.

Current Status and Perspectives of Graphene-based Membranes for Gas Separation (그래핀 기반 기체 분리막의 연구동향 및 전망)

  • Yoo, Byung Min;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.216-225
    • /
    • 2017
  • Since the experimental proof of one-atom-thick graphene single layer from graphite in 2004, graphene, as a leading material opening two-dimensional world, has been tremendously investigated owing to its intrinsic extraordinary physical properties. Among many promising graphene applications, it is believed that membranes might be one of the first significant applications for graphene and its derivatives (e.g., graphene oxide). Recently, a number of simulation results and proof-of-concept experimental approaches towards graphene membranes reflect such positive prospects. Moreover, graphene and graphene oxide already show many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness, excellent mechanical strength, high chemical and thermal stability, and the ability to generate nanopores in the two-dimensional, rigid hexagonal lattices or to create slit-like nanochannels between adjacent sheets. In this paper, important theoretical and experimental developments in graphene or graphene oxide-based membranes for gas separation based on intrinsic properties of graphene and its derivatives will be discussed, emphasizing on transport behavior, membrane formation methods, and challenging issues for actual membrane applications.

Enhanced performance of thin-film nanocomposite RO/NWF membrane by adding ZnO nanospheres in aqueous phase during interfacial polymerization process

  • Li, Hongbin;Shi, Wenying;Su, Yuheng;Hou, Hongxiang;Du, Qiyun;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.225-244
    • /
    • 2017
  • A novel thin-film nanocomposite (TFN) reverse osmosis (RO)/non-woven fabric (NWF) membrane was prepared by adding zinc oxide (ZnO) nanospheres ($30{\pm}10nm$) during the interfacial polymerization process of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on self-made polysulfone (PSF) membrane/polyester (PET) non-woven fabric support. The improved performance of TFN RO membrane was verified in terms of water contact angle (WCA), water flux, salt rejection, antifouling properties and chlorine resistance. The results showed that the WCA value of TFN RO surface had a continuous decrease with the increasing of ZnO content in MPD aqueous solution. The water flux of composite TFN RO membranes acquired a remarkable increase with a stable high solute rejection (94.5 %) in $1g{\cdot}L^{-1}$ NaCl aqueous solution under the optimized addition amount of ZnO (1 wt%). The continuous testing of membrane separation performance after the immersion in sodium hypochlorite solution indicated that the introduction of ZnO nanospheres also dramatically enhanced the antifouling properties and the chlorine resistance of composite RO membranes.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Structure and Properties of Cation Exchange Membrane made of Sulfonated Polyethersulfone

  • Nah, Sung-Soon;Lee, Sung-Min;Ryul, Min-Byung;Lee, Chang-So
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • In this work a new process was developed for the sulfonation of the chemicallly stable engineering polymer polyethersulfone as membrane materials for electrodialysis or a flow battery applications. Commercially available polyethersulfone polymer was partially sulfonated using a CSA sulfonating agent in a dichloromethane solvent, which sulfonated polyethersulfone with various sulfonation levels have been prepared. Sulfonated polyethersulfone (SPES) membranes with different ion capacities were prepared for the purpose of identifying cation exchange membrane properties, in an attempt to find a low cost replacement for Nafion, which most of the perfluorinated membranes, known to exhibit a prolonged service life, are expensive and difficult to process. The following features were determined: the degree of sulfonation, water uptake, thermal analysis, and electrochemical properties such as ion exchange capacities, resistivity, selectivity of ion permeation. The surface of the cation exchange membranes, decomposed with the H202-treatment, were observed by using scanning electron microscope. The area resistivities of SPES mebranes in 5N-NaOH decreased from $2,150{\;}{\Omega}-cm2$ to less than $15{\Omega}-cm2$ as the ion exchange capacity (IEC) increased from 0.62 to 1.73 millieequivlants per dry gram(meq/dg).eq/dg).

  • PDF

Permanent Sprayed Concrete Tunnel Linings Waterproofed with Bonded Membranes. A Review of the Current State-of-the-art for Hard Rock Conditions

  • Holter, K.G.
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.103-116
    • /
    • 2019
  • Permanent sprayed concrete tunnel linings waterproofed with bonded membranes have been used at a number of important traffic projects over the last decade. Research has been carried out in several teams in order to increase the understanding of the function, properties and behavior of such linings under different loading and boundary conditions. The basic layout of this lining gives fundamental different system properties compared to the traditional lining systems. The main differences pertain to the groundwater exposure and the resulting hydraulic loading, the response of the concrete and membrane materials to this loading, as well as the geomechanically induced loading of the lining structure. The current understanding of the function and properties of such lining structures is presented in the paper based on review of recent research carried out in Norway, as well as field observations and monitoring carried over a several years. The influence of the water exposure on the final condition of the concrete and membrane materials has proven to be of vital importance for proper material testing and acceptance, assessments of the mechanical contribution of the bonded membrane, as well as assessments of the longterm durability of such linings. Obtaining realistic material parameters for the concrete and membrane materials subject to the boundary conditions posed by the groundwater exposure in an undrained structure is emphasized. Finally, some recent results from currently ongoing research on such linings, particularly the hydraulic response of the rock mass and the long term behavior of the concrete and membrane materials are presented.