• Title/Summary/Keyword: Membrane permeability

Search Result 930, Processing Time 0.029 seconds

Cytoprotective Effects of Artemisia princeps Extract through Inhibition of Mitochondrial Dysfunction (애엽(艾葉)의 미토콘드리아 보호 효과)

  • Choi, Hee Yoon;Jeggal, Kyung Hwan;Kim, Young Woo;Lee, Jung Woo;Jo, Soo A;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • Objectives : Artemisia princeps is used as moxa in moxibustion and traditional herbal medicine. And its extracts or compounds is known to have an efficacy of antioxidant, anti-diabete, anti-cancer, anti-inflammation and neuroprotection. This study was performed to investigate the cytoprotective effect of Artemisia princeps extract (APE) against arachidonic acid (AA)+iron-induced oxidative stress on HepG2 cell. Methods : The effects of APE on cell viability has been assessed using MTT assay. And flow cytometric analysis was performed to estimate APE's effects on mitochondrial function. To investigate its underlying mechanism, related protein was analysed by using immunoblot analysis. Results : Treatment of APE increased relative cell viability, prevented a decline of B-cell lymphoma-extra large (Bcl-xL) and cleavage of poly(ADP-ribose) polymerase (PARP) and procaspase-3, and also protected mitochondrial membrane permeability (MMP) against oxidative stress induced by AA+iron. In addition, APE treatment increased phosphorylation of AMP-activated protein kinase (AMPK) exerts a cytoprotective effect. Conclusions : This results demonstrate that APE has an ability to activation of AMPK which protects cells from AA+iron-induced oxidative stress and restores MMP.

Enhanced Local Anesthetic Efficacy of Bioadhesive Ropivacaine Gels

  • Cho, Cheong-Weon;Choi, Jun-Shik;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.357-363
    • /
    • 2011
  • In relieving local pains, ropivacaine has been widely used. In case of their application such as ointments and creams, it is difficult to expect their effects for a significant period of time, because they are easily removed by wetting, movement and contacting. Therefore, the new formulations that have suitable bioadhesion were needed to enhance local anesthetic effects. The effect of drug concentration and temperature on drug release was studied from the prepared 1.5% Carboxymethyl cellulose (CMC) (150MC) gels using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. As the drug concentration and temperature increased, the drug release increased. A linear relationship was observed between the logarithm of the permeability coefficient and the reciprocal temperature. The activation energy of drug permeation was 3.16 kcal/mol for a 1.5% loading dose. To increase the skin permeation of ropivacaine from CMC gel, enhancers such as saturated and unsaturated fatty acids, pyrrolidones, propylene glycol derivatives, glycerides, and non-ionic surfactants were incorporated into the ropivacaine-CMC gels. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the highest enhancing effects. For the efficacy study, the anesthetic action of the formulated ropivacaine gel containing an enhancer and vasoconstrictor was evaluated with the tail-flick analgesimeter. According to the rat tail-flick test, 1.5% drug gels containing polyoxyethylene 2-oleyl ether and tetrahydrozoline showed the best prolonged local analgesic effects. In conclusion, the enhanced local anesthetic gels containing penetration enhancer and vasoconstrictor could be developed using the bioadhesive polymer.

Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways

  • Dey, Tapan;Dutta, Prachurjya;Manna, Prasenjit;Kalita, Jatin;Boruah, Hari Prasanna Deka;Buragohain, Alak Kumar;Unni, Balagopalan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.409-416
    • /
    • 2018
  • Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its anti-proliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, $70{\mu}M$) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.

Antibacterial properties of quinolones

  • Yoshida, Hiroaki
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.40-47
    • /
    • 1997
  • New quinolones generally have a broad antibacterial spectrum against gram-positive, gram-negative, glucose-nonfermenting and anaerobic bacteria. Some of newly developed quinolones have potent activities against S. aureus including MRSA, S.pneumoniae including PRSP, B. fragilis, chlamydiae, mycoplasmas and mycobacteria as well, and show good activities against various strains resistant to antibacterial agents of other classes. Quinolones display postantibiotic effects in vitro and are bactericidal at concentrations similar to or twice that of the minimum inhibitory concentrations (MICs) for susceptible pathogens. In experimental murine infection models including systemic infections with various pathogens such as S. aureus, S. pyogenes, S. pneumoniae, E. coli and P. aeruginosa, quinolones have shown good oral efficacy as well as parenteral efficacy. Good oral absorption and good tissue penetration of quinolones account for good therapeutic effects in clinical settings. The target of quinolones are two structurally related type II topoisomerases, DNA gyrase and DNA topoisomerase IV. Quinolones are shown to stabilize the ternary quinolone-gyrase-DNA complex and inhibit the religation of the cleaved double-stranded DNA. Bacteria can acquire resistance to quinolones by mutations of these target enzymes. Mutation sites and amino acid changes in DNA gyrase and DNA topoisomerase IV are similar in the organisms examined, suggesting that the mechanism of quinolone resistance in the target enzymes is essentially the same among various organisms. Quinolones act on both the target enzymes to different degrees depending on the organisms or agents tested, and bacteria become highly resistant to quinolones in a step-wise fashion. Incomplete cross-resistance among quinolones in some strains of E. coli and S. aureus suggests the possibility of finding quinolones active against quinolone-resistant strains which are prevailing now. To find such quinolones, the potency toward two target enzymes and the membrane permeability including influx and/or efflux systems should be taken into account.

  • PDF

Bioaugmentation with GFP-Tagged Pseudomonas migulae AN-1 in Aniline-Contaminated Aquifer Microcosms: Cellular Responses, Survival and Effect on Indigenous Bacterial Community

  • Zhao, Yongsheng;Qu, Dan;Zhou, Rui;Ma, Yunge;Wang, Hao;Ren, Hejun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.891-899
    • /
    • 2016
  • The recently isolated aniline-degrading bacterium Pseudomonas migulae AN-1 was tagged with green fluorescent protein (GFP) to investigate its bioaugmentation potential against aniline-contaminated groundwater through microcosm experiments. The survival and cellular response of GFP-tagged AN-1 introduced in a lab-scale aquifer corresponded directly with aniline consumption. During the process, the GFP-tagged AN-1 biomass increased from 7.52 × 105 cells/ml to 128 × 105 cells/ml and the degradation rate of aniline was 6.04 mg/l/h. GFP-tagged AN-1 was moderately hydrophobic (41.74%-47.69%) when treated with 20-100 mg/l aniline and exhibited relatively strong hydrophobicity (55.25%-65.78%) when the concentration of aniline was ≥100 mg/l. The membrane permeability of AN-1 increased followed by a rise in aniline below 100 mg/l and was invariable with aniline above 100 mg/l. Pyrosequencing analysis showed that the relative abundance of Proteobacteria (accounted for 99.22% in the non-bioaugmentation samples) changed to 89.23% after bioaugmentation with GFP-tagged AN-1. Actinobacteria increased from 0.29% to 2.01%, whereas the abundance of Firmicutes barely changed. These combined findings demonstrate the feasibility of removing aniline in aquifers by introducing the strain AN-1 and provide valuable information on the changes in the diversity of dominant populations during bioaugmentation.

Effect of Polygoni Multiflori Ramulus extract against arachidonic acid and iron-induced oxidative stress in HepG2 cell and CCl4-induced liver injury in mice (야교등의 항산화 및 간보호효과)

  • Jeon, Chang Kwon;Jung, Ji Yun;Park, Chung A;Jee, Seon Young;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2017
  • Objectives : Polygoni Multiflori Ramulus has been widely used as a traditional medicinal herb for the treatment of insomnia, limb pain and itch. The extract of Polygoni Multiflori Ramulus (PMRE) is known to have a modulatory effect of many inflammatory responses. This study was performed to investigate the hepatoprotective effect of PMRE against arachidonic acid (AA) + iron-induced oxidative stress on HepG2 cell and carbon tetrachloride ($CCl_4$)-induced liver injury on mice. Methods : The effects of PMRE on cell viability was assessed by MTT assay. And flow cytometric analysis was performed to estimate the effects on mitochondrial function. To investigate its underlying mechanism, apoptosis-related proteins were analysed by using immunoblot analysis. In addition, ICR mouse were administrated (po) with the PMRE (30, 100 mg/kg) for 3 days and then, injected (ip) with $CCl_4$ (0.5 ml/kg body weight) to induce acute liver damage. The level of pro-caspase-3 was measured. Results : Treatment of PMRE increased relative cell viability, prevented a cleavage of poly (ADP ribose) polymerase and pro-caspase-3, and also reduced mitochondrial membrane permeability against AA + iron-induced oxidative stress. In addition, PMRE treatment decreased liver injury induced by $CCl_4$, as evidenced by increases in pro-caspase-3 level. Conclusions : These results demonstrate that PMRE has an ability to anti-oxidant and hepatoprotective effect against AA + iron-induced oxidative stress and $CCl_4$-induced liver injury.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

In Vitro Study of Transdermal Delivery System for Caffein in Slim Patch Type (Slim Patch Type을 이용한 카페인의 경피흡수에 관한 연구)

  • Kim, Jung-Soo;Kwon, Dong-Hwan;Lim, Do-Hyeong;Kim, Gu-Seo;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.97-102
    • /
    • 2006
  • The aim of this study was to investigate the feasibility and optimize permeability of slim patch type as a transdermal delivery system of caffein. Slim patch type was formulated and tested in modified Franz diffusion cell across cellulose membrane and hairless mouse skin in pH 5.8 phosphate buffer solution (PBS). The effect of $Pharmsolv^{\circledR}$ and drug concentration on permeation at four model, 1,2% $Pharmsolv^{\circledR}$ with $0.12\;mg/cm^2$ caffein and 0.12, $1.2\;mg/cm^2$ caffein with 2% $Pharmsolv^{\circledR}$ through hairless mouse skin was studied in vitro. The release of caffein from slim patch with various loading was fitted by the Higuchi's diffusion equation. The result showed that chemical $Pharmsolv^{\circledR}$ produced a large and significant increase of permeation. The effect of 2% $Pharmsolv^{\circledR}$ on permeation of caffein was greater about 10-fold greater than 1% $Pharmsolv^{\circledR}$ in first 60 minutes. The effect of drug concentration, however, was lower than that produced by chemical $Pharmsolv^{\circledR}$. Within the tested system, the most efficient combination for caffein slim patch type was $0.12\;mg/cm^2$ caffein with 2% $Pharmsolv^{\circledR},$ although $1.2\;mg/cm^2$ caffein with 2% $Pharmsolv^{\circledR}$ showed highest amounts permeation, because permeated percentages were significantly lower about $1/4{\sim}1/5$ times.

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress

  • Zhang, Bo;Wang, Bing;Cao, Shuhua;Wang, Yongqiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.491-497
    • /
    • 2015
  • Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3- gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-$1{\beta}$ and TNF-${\alpha}$ mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of $p47^{phox}$ translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.