• 제목/요약/키워드: Membrane interface

검색결과 157건 처리시간 0.02초

초음파 표면개질에 의한 CDI 전극용 술폰화 염화비닐(PVC) 멤브레인의 제조 및 특성 (Preparation and Properties of Sulfonated Polyvinylchloride (PVC) Membrane for Capacitive Deionization Electrode by Ultra Sonication Modification)

  • 황치원;오창민;황택성
    • 접착 및 계면
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2014
  • 이온 교환막은 전기투석, 확산투석, Redox flow 전지, 연료전지 등 다양하고 넓은 분야에서 사용되고 있다. 초음파를 이용하여 만들어진 PVC 양이온 교환막을 시간을 변화시켜 가면서 술폰화 반응에 의해 제조하였다. 술폰화제로 황산을 사용하였으며, 술폰화 PVC 양이온 교환막의 기본구조와 특성을 FT-IR, EDX, Water uptake, 이온교환용량(IEC), 전기저항(ER), 전도도, 이온수송수 및 표면 morphology를 SEM 분석하였다. FT-IR 스펙트럼 분석결과 술폰화 PVC 양이온 교환막에 술폰산기가 도입되었음을 확인하였으며 멤브레인의 Water uptake, IEC, 전기 저항 및 ion transport number의 최대값은 각각 40.2%, 0.87 meq/g, $35.2{\Omega}{\cdot}cm^2$ 및 0.88이었다.

Liquid Crystal Based Optical Sensor for Imaging Trypsin Activity at Interfaces Between Aqueous Phases and Thermotropic Liquid Crystals

  • Zhang, Minmin;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2973-2977
    • /
    • 2013
  • In this study, we developed a liquid crystal (LC)-based optical sensor for monitoring enzymatic activity through orientational changes in liquid crystals (LCs) coupled to the properties of a poly-${\small{L}}$-lysine (PLL)-based polymeric membrane. We prepared a PLL-based polymeric membrane at the planar interface between the thermotropic liquid crystal and aqueous phases. The PLL-based polymeric membrane was obtained by contacting the PLL solution with water immiscible LCs, 4-cyano-4'-pentyl-biphenyl (5CB) doped with adipoyl chloride. We then investigated the membrane properties by examining the permeability of the membrane to phospholipids, 1,2-didodecanoyl-rac-glycero-3-phosphocholine (DLPC). The permeability of the membrane to transport phospholipids was monitored through the orientational transition of 5CB in contact with the dispersions of DLPC. Since trypsin can enzymatically catalyze the hydrolysis of PLL, we incubated an aqueous trypsin solution with the membrane for 2 h at room temperature to cause an increase in the permeability of the polymeric membrane to DLPC. As a result, a bright to dark optical shift of LCs was observed, which implied that an enzymatic reaction between trypsin and PLL-based membrane occurred. Two control experiments using chymotrypsin and bovine serum albumin (BSA) revealed no sign of improved permeability based on the orientational transition of LCs.

고분자전해질 연료전지의 MEA 제조방법에 따른 성능비교 (The effect of MEA fabrication procedure on PEMFC performance)

  • 조용훈;조윤환;박인수;최백범;정대식;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.291-295
    • /
    • 2005
  • The PEMFC behavior is quite complex and is influenced by several factors, including composition and structure of electrodes and membrane type. Fabrication of MFA is important factor for proton exchange membrane fuel cell. MFA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC wi th direct coat ing method was better than wi th hot pressing method because membrane internal resistance and membrane-:-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

Improved Membranes for the Extraction of Heavy Metals

  • Xu, Jianying;Shen, Wei;Paimin, Rohani;Wang, Xungai
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.68-74
    • /
    • 2004
  • This work presents a series of experimental tests on new practical approaches in membrane design to improve extraction capacity and rate. We chose an extraction system involving Aliquat 336 as the extractant and Cd(II) as the metal ion to be extracted to demonstrate these new approaches. The core element in the new membrane assembly was the extractant loaded sintered glass filter. This membrane assembly provided a large interface area between the extractant and the aqueous solution containing metal ions. By recycling the aqueous solution through the membrane assembly, the extraction rate was significantly improved. The membrane assembly also offered good extraction capacity.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Numerical study of desalination by Sweeping Gas Membrane Distillation

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.353-361
    • /
    • 2020
  • The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.

산/염기 제조를 위한 바이폴라막의 물분해 특성 연구 (A Study on water-splitting characteristics of bipolar membranes for acid/base generation)

  • 강문성;문승현;이재석
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 추계 총회 및 학술발표회
    • /
    • pp.75-78
    • /
    • 1998
  • 1. Introduction : The clean technology using ion exchange membranes have drawn attention increasingly with advancement of the membrane synthesis. Ion exchange membranes have been used for diffusion dialysis, electrodialysis, electrodialytic water splitting and electrodeionization. Bipolar membranes(BPM), consisting of a cation exchange layer and an an_ion exchange layer, can convert a salt to an acid and a base without chemical addition. Using the bipolar membrane, a large quantity of industrial wastes containing salts can be reprocessed to generate acids and bases. Recent development of high performance bipolar membranes enables to further expand the potential use of electrodialysis in the chemical industry. The water-splitting mechanism in the bipolar membrane, however, is a controversial subject yet. In this study bipolar membranes were prepared using commercial ion exchange membranes and hydrophilic polymer as a binder to investigate the effects of the interface hydrophilicity on water-splitting efficiency. In addition, the water splitting mechanism by a metal catalyst was discussed.

  • PDF

투과증발 시스템 모사기 개발 (Development of Pervaporation System Simulator)

  • 장재화;유제강;안승호;이규현;류경옥
    • 멤브레인
    • /
    • 제7권1호
    • /
    • pp.31-38
    • /
    • 1997
  • 유기물 탈수 공정에 적용되는 투과증발 시스템을 설계하기 위한 투과증발 시스템 모사기가 개발되었다. 모사기는 시스템 모델링 및 수치 해석 알고리즘과 관련된 simulation engine과 모사기를 Windows 환경에서 쉽게 사용할 수 있도록 한 Graphical User Interface(GUI)로 구성되었다. 모사기 구조 및 사용 방법 등을 실규모 에탄올 탈수 공정 모사를 통하여 구체적으로 설명하였으며, 모사 결과를 실제 에탄올 탈수 Pilot test에 의한 실험 결과와 비교함으로써 모사기 성능이 우수함을 입증하였다.

  • PDF

Enantiospecific separation in biphasic Membrane Reactors

  • Giorno, Lidietta
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 추계 총회 및 학술발표회
    • /
    • pp.15-18
    • /
    • 1998
  • Membrane reactors are systems which combine a chemical reactor with a membrane separation process allowing to carry out simultaneously conversion and product separation. The catalyst can be immobilized on the membrane or simply compartmentalized in a reaction space by the membrane. Membrane reactors are today investigated to produce optically pure isomers and/or resolve racemic mixture of enantiomers. The interest towards these systems is due to the increasing demand of enantiomerically pure compounds to be used in the pharmaceutical, food, and agrochemical industries. In fact, enantiomers can have different biological activities, which often influence the efficacy or toxicity of the compound. On the basis of current literature there are basically two schemes on the use of membrane technology to produce enantiomers. In one case, the membrane itseft is intrinsically enantioselective: the membrane is the chiral system which selectively separates the wanted isomer on the basis of its conformation. In the other, a kinetic resolution using an enantiospecific biocatalyst is combined with a membrane separation process; the membrane separates the product from the substrate on the basis of their relative chemical properties (i.e. solubility). This kind of configuration is widely used to carry out kinetic resolutions of low water soluble substrams in biphasic membrane reactors [Giomo, 1995, 1997; Lopez, 1997]. These are systems where enzyme-loaded membranes promote reactions between two separate phases thanks to the properties of enzymes, such as lipases, to catalyse reactions at the org ic/aqueous interface; the two phases are maintained in contact and separated at the membrane level by operating at appropriate transmembrane pressure. A schematic representation of biphasic membrane reactor is shown in figure 1, while an example of enantiospecific reaction and product separation carried out with these systems is reported in figure 2.

  • PDF

수용성 접착제 경화 공정용 제습 막 건조기 시스템의 효과 (The Effects of the Dehumidifying Membrane Dryer for the Curing Processes of Waterborne Adhesives)

  • 유서윤;임충선;서봉국
    • 접착 및 계면
    • /
    • 제17권2호
    • /
    • pp.62-66
    • /
    • 2016
  • 수용성 접착제의 경화 공정은 일반적으로 열풍건조기를 대부분 사용하고 있다. 열풍건조기는 열에 의해서만 수용성 접착제를 경화시키는 방법으로서, 충분한 경화를 위해 $100^{\circ}C$ 이상의 높은 온도와 최소 20 min 이상의 경화 공정을 요구하는 단점을 가지고 있다. 경화 과정 중에 온도가 너무 높을 경우, 접착제의 점도가 낮아져 접착에 방해가 될 수 있으며, 경화 과정 중에 발생하는 수분에 의해 경화 조건이 일정하게 유지되기 어렵다. 본 연구에서는 제습 막 건조기 시스템을 활용하여, 수용성 접착제의 경화 공정을 일정하게 유지시키고 공정 중의 제습을 통해 건조공기의 공급으로 경화시간을 단축하고자 한다. 제습 막 건조기 시스템을 활용한 최적의 경화 조건을 찾고, 제습 막 건조기 시스템의 효과를 확인하기 위하여, 제습 막 건조기와 강제순환 건조기를 적용한 경화 과정을 통해 접착력(peel strength)을 측정하여 비교 분석해 보았다.