• 제목/요약/키워드: Membrane interaction

검색결과 475건 처리시간 0.03초

Differential Distribution of Ganglioside GM3 in Seminiferous Tubule and Epididymis of Adult Rats

  • Jung, Kyu-Yong;Kim, Bo-Hyun;Cho, Mi-Ran;Kim, Hyoung-Min;Lee, Young-Choon;Kim, Cheorl-Ho;Kim, Jin-Kyeoung;Kim, Byung-Jin;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제24권4호
    • /
    • pp.360-366
    • /
    • 2001
  • Gangliosides are ubiquitous membrane components in mammalian cells and are suggested to play important roles in various functions such as cell-cell interaction, adhesion, cell differentiation, growth control and signaling. Among all ganglio-series gangliosides, GM3 has the simplest carbohydrate structure, and has been shown as a major gangliosides, in male reproductive system. To study GM3 distribution in the seminiferous tubule and epididymis, frozen sections were stained with specific monoclonal antibody (MAb) against ganglioside GM3. In the seminiferous tubule of testis, pachytene spermatocytes and spermmatids expressed ganglioside GM3, but not in spermatogonia and sertoli cells. Spermatogonia and sertoli cells near the basement membrane were negatively reacted to anti-GM3. In the epididymis, GM3 was expressed only in some interstitial cells. Taken togethers, these results suggest that the expression of ganglioside GM3 in rat seminiferous tubule and epididymis is spatio-temporally regu lated during spermatogenesis.

  • PDF

이분자막 형성능을 가지는 인산형 양친매성 화합물의 단분자막 특성 (Monolayer Characteristics of Bilayer Forming Phosphate Amphiphiles)

  • 김종목
    • 멤브레인
    • /
    • 제5권2호
    • /
    • pp.89-96
    • /
    • 1995
  • Azobenzene기를 가지는 인산형 양친매성 화합물의 기/액 계면에 있어서으 단분자막 거동이 $\pi-A$ 곡선 및 표면흡수스펙트라로 검토되었다. 분자간의 강한 수소결합력을 가지는 이 화합물들은 수면에 전개 후 즉시 결정화하여 단분자막 domain들을 형성한 회합체 흡수스펙트라를 나타내었다. 그러나 subphase의 조건(분자량이 큰 유가염의 첨가 및 pH의 상승)을 변화시킴에 의해 결정 domain 형성을 제어하는 것이 가능하였다. 한편, 금속이온 첨가는 인산령 양친매성 단분자막의 분재배향상태를 변화시켰다. 금속이온의 전하가 높을수록 ($1\leq2$ < 3 < 4 가), azobenzene기를 가지는 양친매성 화합물의 분자상태가 tilt된 배향성에 기인하는 장파장으로 이동한 흡수극대를 나타내었다. 이것은 서로 다른 전하를 가진 금속이온을 흡착시킴에 의해 단분자막의 분자배향성을 변화시켜, 단분자막의 집합상태 제어 가능성을 시사한다.

  • PDF

인지질막 결합에 필요한 제5혈액응고인자 트립토판잔기들의 역할규명 (Characterization of tryptophan residues of human coagulation factor V required for binding to phospholipid membranes)

  • Kim, Suhng-Wook
    • 생명과학회지
    • /
    • 제13권4호
    • /
    • pp.463-472
    • /
    • 2003
  • 제5인자와 지질막 phosphatidylserine과의 상호작용은 prothrombinase 복합체의 활성을 조절하는데 중요하다. 본 연구에서 제5인자의 지질 결합부위에 위치한 Trp2063과 Trp2064를 동시에 돌연변이 시킨 재조합 제5인자를 과발현 시키고 정제하였다. 돌연변이된 제5인자는 1-10%의 phosphatidylserine을 포함하는 지질막에서 아주낮은 활성을 보였다. surface plasmon resonance에 의해서 지질막과의 결합을 측정한 결과 돌연변이된 제5인자가 본래의 제5인자보다 고정된 지질막에의 결합이 현저하게 떨어지는 것을 관찰하였다. 제5인자가 phosphatidylserine을 포함하는 지질막에 높은 친화력으로 결합하기 위해서는 Trp2063과 Trp2064가 필수적이고 이러한 상호작용은 생리적인 phosphatidylserine 농도를 포함하는 지질막 위에서 prothrombinase 복합체의 형성에 필요하다는 결론을 내렸다.

FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석 (Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction)

  • 유빈;임기성;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia

  • Krishnan, Manigandan;Choi, Joonhyeok;Choi, Sungjae;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.25-32
    • /
    • 2021
  • Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the anti-endotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.

Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route

  • Patino-Portela, Melissa C.;Arciniegas-Grijalba, Paola A.;Mosquera-Sanchez, Lyda P.;Sierra, Beatriz E. Guerra;Munoz-Florez, Jaime E.;Erazo-Castillo, Luis A.;Rodriguez-Paez, Jorge E.
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.191-210
    • /
    • 2021
  • To compare the antifungal effect of two nanomaterials (NMs), nanoparticles of zinc oxide were synthesized by a chemical route and zinc oxide-based nanobiohybrids were obtained using green synthesis in an extract of garlic (Allium sativum). The techniques of X-Ray Diffraction (XRD), Infrared (IR) and Ultraviolet Visible (UV-Vis) absorption spectroscopies and Scanning (SEM) and Transmission Electron Microscopies (TEM) were used to determine the characteristics of the nanomaterials synthesized. The results showed that the samples obtained were of nanometric size (< 100 nm). To compare their antifungal capacity, their effect on Cercospora sp. was evaluated. Test results showed that both nanomaterials had an antifungal capacity. The nanobiohybrids (green route) gave an inhibition of fungal growth of ~72.4% while with the ZnO-NPs (chemical route), inhibition was ~87.1%. Microstructural studies using High Resolution Optical Microscopy (HROM) and ultra-structural analysis using TEM carried out on the treated strains demonstrated the effect of the nanofungicides on the vegetative and reproductive structures, as well as on their cell wall. To account for the antifungal effect presented by ZnO-NPs and ZnO nanobiohybrids on the fungi tested, effects reported in the literature related to the action of nanomaterials on biological entities were considered. Specifically, we discuss the electrical interaction of the ZnO-NPs with the cell membrane and the biomolecules (proteins) present in the fungi, taking into account the n-type nature of the ZnO semiconductor and the electrical behavior of the fungal cell membrane and that of the proteins that make up the protein crown.

인지질계 양쪽성 계면활성제 CDP-W 첨가가 리포좀 특성에 미치는 영향 (Effect of Phospholipid Zwitterionic Surfactant CDP-W on the Characteristics of Liposome)

  • 이정민;임종주
    • 공업화학
    • /
    • 제35권3호
    • /
    • pp.230-238
    • /
    • 2024
  • 본 연구에서는 인지질계 양쪽성 계면활성제 CDP-W 첨가가 지질 소포체 막과의 상호 작용에 미치는 영향에 관하여 살펴보았다. 이를 위하여 CDP-W 양쪽성 계면활성제와 레시틴 S100-3의 임계 마이셀 농도 및 표면장력 등의 계면 물성을 측정하였다. 또한 pH 변화에 따른 1 wt% 계면활성제 수용액의 제타 전위 측정을 통하여 양쪽성 계면활성제 CDP-W가 양이온 계면활성제에서 음이온 계면활성제로 작용이 전환되는 등전점을 결정하였으며, 이 결과를 바탕으로 pH 변화 및 CDP-W 첨가가 리포좀의 평균 입자 크기, 다분산 지수 및 제타 전위 등과 같은 안정성에 미치는 영향에 살펴보았다. 또한 가장 안정한 상태의 리포좀이 형성되는 pH 6의 조건에서 CDP-W 첨가에 따른 리포좀 막의 형광 이방성, 변형성, 녹는 점 측정 등을 통하여 리포좀 막의 유동성 특성을 측정하고 리포좀 막의 유동성이 포집효율 및 안정성에 미치는 영향에 관하여 살펴보았다.

Agrobacterium tumefaciens Spheroplast의 연초엽육 Protoplast내 도입에 관한 세포학적 연구 (Cytological Study of the Introduction of Agrobacterium tumefaciens Spheroplasts into Nicotiana tabacum Protoplasts)

  • 김정희;구용범;이기영
    • Journal of Yeungnam Medical Science
    • /
    • 제2권1호
    • /
    • pp.175-181
    • /
    • 1985
  • Polyethylene glycol(PEG) 처리에 의한 Agrobacterium tumefaciens spheroplast와 연초 엽육 protoplast의 상호작용을 연구하기 위하여, 효소적 방법으로 분리한 연초엽육 protoplast와 carbenicillin 및 lysozyme의 처리에 의해 제조된 Agrobacterium tumefaciens ATCC 15955 spheroplast를 섞어서 polyethylene glycol (PEG) 및 high pH-high $Ca^{2+}$ buffer를 처리한 후 시료를 취하여 전자현미경으로 관찰한 결과, spheroplast는 초기 단계에서 protoplast membrane에 부착하고, 시간이 경과함에 따라 endocytosis에 의해 protoplast의 세포질 내부로 도입된 다음, 점차로 그 형체(cell integrity)가 파괴되어지는 것을 관찰할 수 있었다. 이러한 관찰 결과로부터 spheroplast는 polyethylene glycol(PEG)에 의해 protoplast내부로 endocytosis되어짐을 알 수 있었다.

  • PDF

Solution structure and functional analysis of HelaTx1: the first toxin member of the κ-KTx5 subfamily

  • Park, Bong Gyu;Peigneur, Steve;Esaki, Nao;Yamaguchi, Yoko;Ryu, Jae Ha;Tytgat, Jan;Kim, Jae Il;Sato, Kazuki
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.260-265
    • /
    • 2020
  • Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the κ-KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any β-sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs α/α) scorpion toxins such as κ-hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively-charged residues that is crucial for interaction with voltage-gated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1.

Phosphoinositides Signaling and Epithelial-to-Mesenchymal Transition: Putative Topic for Basic Toxicological Research

  • Lee, Chang-Ho
    • Toxicological Research
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Ptdlns(4,5)$P_2$ is a key cellular phosphoinositide that localizes in separate and distinctive pools in subcellular membrane and vesicular compartments. In membranes, Ptdlns(4,5)$P_2$ acts as a precursor to second messengers and is itself a main signaling and targeting molecule. Specific subcellular localization of type I PIP kinases directed by interacting with specific targeting module differentiates Ptdlns(4,5)$P_2$ production in a spatial and temporal manner. Several lines of evidences support the idea that Ptdlns(4,5)$P_2$ is generated in very specific pools in a spatial and temporal manner or by feeding Ptdlns(4,5)$P_2$ directly to effectors. In this concept, the interaction of PIPKI isoforms with a specific targeting module to allow precise subcellular targeting modulates highly specific Ptdlns(4,5)$P_2$ synthesis and channeling overall effectors. For instance, localization of PIPKI${\gamma}$661 to focal adhesions by an interaction with talin results in spatial and temporal production of Ptdlns(4,5)$P_2$, which regulates EGF-stimulated directional cell migration. In addition, Type $I{\gamma}$ PIPK is targeted to E-cadherin in cell adherence junction and plays a role in controlling dynamics of cell adherence junction and endocytosis of E-cadherin. Characterizing how PIP kinase isoforms are regulated by interactions with their targeting modules, as well as the mechanisms by which their product, Ptdlns(4,5)$P_2$, exerts its effects on cellular signaling processes, is crucial to understand the harmonized control of numerous cellular signaling pathways. Thus, in this review the roles of the Ptdlns(4)P(5) kinases and Ptdlns(4,5)$P_2$ were described and critically reviewed in terms of regulation of the E-cadherin trafficking, cell migration, and formation of cell adherence junction which is indispensable and is tightly controlled in epithelial-to-mesenchymal transition process.