• Title/Summary/Keyword: Membrane interaction

Search Result 475, Processing Time 0.031 seconds

Effect of Nitric Oxide on the Sinusoidal Uptake of Organic Cations and Anions by Isolated Hepatocytes

  • Song, Im-Sook;Lee, In-Kyoung;Chung, Suk-Jae;Kim, Sang-Geon;Lee, Myung-Gull;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.984-988
    • /
    • 2002
  • The issue of whether or not the presence NOx (NO and oxidized metabolites) in the hepatocytes at pathological levels affects the functional activity of transport systems within the sinusoidal membrane was investigated. For this purpose, the effect of the pretreatment of isolated hepatocytes with sodium nitroprusside (SNP), a spontaneous NO donor, on the sinusoidal uptake of tributylmethylammonium (TBuMA) and triethylmethyl ammonium (TEMA), representative substrates of the organic cation transporter (OCT), and taurocholate, a representative substrate of the $Na^+$/taurocholate cotransporting polypeptide (NTCP), was measured. The uptake of TBuMA and TEMA was not affected by the pretreatment, as demonstrated by the nearly identical kinetic parameters for the uptake ($i.e., V_{max}, K_{m} and CL_{linear}$). The uptake of mannitol into hepatocytes was not affected, demonstrating that the membrane integrity remained constant, irregardless of the SNP prutreatment. On the contrary, the uptake of taurocholate was significantly inhibited by the pretreatment, resulting in a significant decrease in V_{max}$, thus providing a clear demonstration that NOx preferentially affects the function of NTCP rather than OCT on the sinusoidal membrane. A direct interaction between NOx and NTCP or a decrease in $Na^+/K^+$ ATPase activity as the result of SNP pretreatment might be responsible for this selective effect of NOx.

Interactions between secreted GRA proteins and host cell proteins across the parasitophorous vacuolar membrane in the parasitism of Toxoplasma gondii

  • Ahn, Hye-Jin;Kim, Sehra;Kim, Hee-Eun;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.303-312
    • /
    • 2006
  • Interactions between GRA proteins of dense granules in Toxoplasma gondii and host cell proteins were analyzed by yeast two-hybrid technique. The cMyc-GRA fusion proteins expressed from pGBKT7 plasmid in Y187 yeast were bound to host cell proteins from pGADT7-Rec-HeLa cDNA library transformed to AH109 yeast by mating method. By the selection procedures, a total of 939 colonies of the SD/-AHLT culture, 348 colonies of the $X-\alpha-gal$ positive and PCR, 157 colonies of the $X-\beta-gal$ assay were chosen for sequencing the cDNA and finally 90 colonies containing ORF were selected to analyze the interactions. GRA proteins interacted with a variety of host cell proteins such as enzymes, structural and functional proteins of organellar proteins of broad spectrum. Several specific bindings of each GRA protein to host proteins were discussed presumptively the role of GRA proteins after secreting into the parasitophorous vacuoles (PV) and the PV membrane in the parasitism of this parasite.

The Permeation Properties of $O_{2}\;and\;N_{2}$ for BPSf/TMSPSf Blend Membrane (BPSf/TMSSf 블렌드막을 통한 산소와 질소의 투과특성)

  • Kim Hyunjoon;Hong Suk-In
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • The permeation properties of $O_2\;and\;N_2$ were measured for bromobisphenol A polysulfone(BPSf), bisphenol A trimethylsilylated polysulfone(TMSPSf) and their blend membrane to investigate the structure-properties relationships. BPSf shows relatively high permselectivity. It can be explained that the strong polarity of bromine in BPSf increases chain packing ability. In this case the distance of polymer chains is reduced by increasing of interchain interaction by induced dipole. TMSPSf shows relatively high permeability. The higher value of permeability coefficients for TMSPSf is due to the substitution of very bulky trimethylsilyl groups. The replacement of phenyl hydrogens of bisphenol A polysulfone(PSf) with trimethylsilyl groups results in higher fractional free volume(FFV). In this work, taking into account the complimentary features of BPSf and TMSPSf, BPSf/TMSPSf blend was prepared and the compatibility in mixing are examined. The BPSf/TMSPSf blend shows higher permeability than commercial PSf, with minimum loss of selectivity. The miscibility of the BPSf/TMSPSf blend is confirmed by the single glass transition temperature.

  • PDF

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Mechanisms of Selective Antimicrobial Activity of Gaegurin 4

  • Kim, Hee-Jeong;Lee, Byeong-Jae;Lee, Mun-Han;Hong, Seong-Geun;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • Gaegurin 4(GGN 4), an antimicrobial peptide isolated from a Korean frog, is five times more potent against Gram-positive than Gram-negative bacteria, but has little hemolytic activity. To understand the mechanism of such cell selectivity, we examined GGN4-induced $K^+$ efflux from target cells, and membrane conductances in planar lipid bilayers. The $K^+$ efflux from Gram-positive M. luteus(2.5 ${\mu}g/ml$) was faster and larger than that from Gram-negative E. coli(75 ${\mu}g/ml$), while that from RBC was negligible even at higher concentration(100 ${\mu}g/ml$). GGN4 induced larger conductances in the planar bilayers which were formed with lipids extracted from Gram-positive B. subtilis than in those from E. coli(p<0.01), however, the effects of GGN4 were not selective in the bilayers formed with lipids from E. coli and red blood cells. Addition of an acidic phospholipid, phosphatidylserine to planar bilayers increased the GGN4-induced membrane conductance(p<0.05), but addition of phosphatidylcholine or cholesterol reduced it(p<0.05). Transmission electron microscopy revealed that GGN4 induced pore-like damages in M. luteus and dis-layering damages on the outer wall of E. coli. Taken together, the present results indicate that the selectivity of GGN4 toward Gram-positive over Gram-negative bacteria is due to negative surface charges, and interaction of GGN4 with outer walls. The selectivity toward bacteria over RBC is due to the presence of phosphatidylcholine and cholesterol, and the trans-bilayer lipid asymmetry in RBC. The results suggest that design of selective antimicrobial peptides should be based on the composition and topology of membrane lipids in the target cells.

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

EFFECT OF GINSENG SAPONIN ON THE VASCULAR SMOOTH MUSCLE

  • Lee Kwang Soo
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.71-76
    • /
    • 1980
  • Aortic strips were prepared from rabbits, and the tensions were maintained by administration of norepinephrine into the incubation chamber. The application of diol or triol induced relaxation of the aortic strip, as indicated by the decreased aortic tension. Triol, in a concentration of $30\;mg\%\;causes\;approximately\;50\%$ of muscle relaxation, whereas a similar degree of relaxation is induced by $50\;mg\%$ of diol. This indicates that both triol and diol cause relaxation of the aorta, but that triol is about $170\%$ more potent than diol. It is well established that blood-vessel smooth-muscle tone is regulated by the available intracellular $Ca^{++}$ concentration, which in turn is profoundly influenced by interaction of the cellular membrane and sarcoplasmic reticulum in the smooth muscle. Thus, any agent which modifies the smooth-muscle tone is expected to interfere with the $Ca^{++}$ binding or uptake of sarcolemma and sarcoplasmic reticulum. In the following experiments sarcoplasmic reticulum and sarcolemma were prepared from the ventricle of rabbit heart, and the active $Ca^{++}$ uptake by these cellular components was measured employing $Ca^{45}$ in the presence of triol and diol. It was found that the active $Ca^{++}$ uptake in the presence of ATP by sarcoplasmic reticulum was inhibited by both triol and diol. Panaxatriol, in a concentration of $80\;mg\;\%,$ inhibited $Ca^{++}$ uptake by $30\%,$ whereas panaxatriol in the same concentration inhibited uptake by $20\%.$ It is clear that triol is a more potent inhibitor of active $Ca^{++}$ transport in sarcoplasmic reticulum than diol. The $Ca^{++}$ binding of the cellular membrane was also studied employing Ca45 and milipore techniques. It was found that triol in a concentration of $80\;mg\;\%,$ decreased $Ca^{++}$ binding by $29\%.$ Diol in the same concentration decreased the binding by $17\%.$ It is clear that both triol and diol inhibit $Ca^{++}$ binding to the cellular membrane, but triol is approximately $180\%$ more potent than diol.

  • PDF

Loss of Surface-Associated Albumin during Capacitation and Acrosome Reaction of Mouse Epididymal Sperm in vitro (정자의 수정능력획득 과정 동안 정자표면의 Albumin의 이탈현상)

  • 계명찬;김문규
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.514-522
    • /
    • 1995
  • In order to examine the interaction of albumin with the sperm during capacitation in mouse, proteins of cauda epididymal sperm were extracted under various conditions and analyzed with SDS-PAGE. Sperm surface labeling patterms were also examined using fluorochroin~conjugated wheat germ agglutinin (WGA) and bovine serum albumin (BSA). Albumin was detached from the sperm surface during the incubation and seemed to be constituted the major protein components of the conditioned media in which sperm incubated for 90 mm. Detachment of albumin from the sperm was not affected by the Ca2+ in the medium. WGA-FITC labeling confirmed that Triton X-100 permeabilired plasma membrane overlaying the apical segment of sperm head and detached plasma membrane associated proteins having negatively charged glycoconjugates. BSA-FITC labeling of epididymal sperm occurred on the apical segment of periacrosoinal region and postacrosomal region of the head. BSA-FITC labeling was not observed in periacrosoinal region of the sperm treated with Ca2+-ionophore ~3187 (10 MM)~ whereas the postacrosome region of acrosome-reacted sperm was still labeled after the AR. These results suggest that albumin bound to the surface of epididymal sperm is detached during the capacitation process, and it might be involved In physiological change of sperm plasma membrane accompanying the capacitation.

  • PDF

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F.;Skiba, M.;Hallouard, F.;Moulahcene, L.;Kebiche-Senhadji, O.;Benamor, M.;Lahiani-Skiba, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.223-240
    • /
    • 2016
  • In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.