• 제목/요약/키워드: Membrane interaction

검색결과 479건 처리시간 0.028초

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

분자동역학 전산모사에서 force-field의 종류가 수소이온 확산도 계산에 미치는 영향 (Effect of Force-field Types on the Proton Diffusivity Calculation in Molecular Dynamics (MD) Simulation)

  • 이지현;박치훈
    • 멤브레인
    • /
    • 제27권4호
    • /
    • pp.358-366
    • /
    • 2017
  • 연료전지용 전해질막의 성능에 있어서 가장 중요한 요소는 수소이온이 전해질막 내부에 형성된 수화채널을 따라서 얼마나 빨리 전달될 수 있느냐이다. 여기에는 수화채널의 모폴로지 및 수소이온의 확산도 등이 매우 중요한 요소가 되는데, 이를 규명하기 위하여 다양한 분자동역학 전산모사 연구가 진행되고 있다. 분자동역학 계산에 있어서 각 원자의 움직임 및 상호작용을 미리 변수화 시켜 놓은 force-field는 필수 요소 중 하나로서, 본 연구에서는 이러한 force-field의 종류가 전해질막 전산모사에 미치는 영향을 분석하기 위하여, 다양한 force-field를 이용하여 연료전지용 전해질막의 수소이온 확산도를 계산하였다. 이 과정에서 non-bonding interaction을 결정하는 전하 값이 수화채널 모폴로지 형성에 매우 중요한 역할을 한다는 것이 밝혀졌으며, COMPASS force-field가 가장 정확한 수소이온 확산도 값을 얻음으로써 연료전지용 전해질막의 전산모사에 있어서 가장 적절한 force-field일 것으로 판단된다. 이러한 force-field의 적절한 선정은 최종 분자 구조 뿐만 아니라 수소이온 확산도에도 큰 영향을 주는 것을 알 수 있었으며, 연료전지용 전해질막 전산모사 수행 시에는 이러한 부분을 충분히 감안하여 force-field를 선택하여야 할 것이다.

A Probing of Inhibition Effect on Specific Interaction Between Glucose Ligand Carrying Polymer and HepG2 Cells

  • Park, Keun-Hong;Park, Sang-Hyug;Lee, Hyun-Jung;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.450-455
    • /
    • 2004
  • A reducing glucose-carrying polymer, called poly [3-O-(4'-vinylbenzyl)-D-glucose](PVG), was interacted with HepG2 cells including a type-l glucose transporter (GLUT-1) on the cell membrane. The cooperative interaction between a number of GLUT-1s and a number of reducing 3-O-methyl-D-glucose moieties on the PVG polymer chain was found to be responsible for the increase in the interaction with HepG2 cells. The affinity between the cells and the PVG was studied using RITC-labeled glycopolymers. The specific interaction between the GLUT-1 on HepG2 cells and the PVG polymer carrying reducing glucose moieties was suppressed by the inhibitors, phloretin, phloridzin, and cytochalasin B. Direct observation by confocal laser microscopy with the use of RITC-labeled PVG and pretreatment of HepG2 cells with the inhibitors demonstrated that the cells interacted with the soluble form of the PVG polymer via GLUT-1, while fluorescence labeling of the cell surface was prevented after pretreatment with the inhibitors of GLUT-1.

The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia

  • Juan Yang;Sungmin Park;Hyun Ju Kim;Sang Jun Lee;Won Hee Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.180-187
    • /
    • 2023
  • The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.

Tangible Space and Interactive Technology

  • Yoon, Joong-Sun;Yoh, Myeung-Sook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2687-2692
    • /
    • 2003
  • Recent advancement in information technology requires new interpretations for the space among human, machines and environment. Investigation of space between information and human could lead to the proper ways, in which human and machines meet. Various concepts regarding space have been explored in terms of “virtual reality in cyberspace” and “embodiment in tangible space.” “Mom (embodiment),” space, virtuality, sensation/perception, and interactive technology are some of the key ideas to be explored. Human “Mom” is such a fundamental membrane through which human can interact with the environment physically and mentally. An embodied interaction paradigm, based on “Mom,” is investigated. This leads to interactive technology paradigm. Sound space is an invisible but a tangible space in a sense that it travels in emotional tremors and stimulates new sensations and perceptions. Three cases are introduced to experiment such tangible space as a new and proper interactive paradigm. Also, a historical model of interaction is reviewed, which includes electrical, symbolic, textual, graphical, tangible, and social interaction.

  • PDF

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles

  • Jung, Hyun-Ho;Yang, Sung-Tae;Sim, Ji-Yeong;Lee, Seung-Kyu;Lee, Ju-Yeon;Kim, Ha-Hyung;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.362-368
    • /
    • 2010
  • Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic $\alpha$-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic $\alpha$-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.

Ginsentology III;Identifications of Ginsenoside Interaction Sites for Ion Channel Regulation

  • Choi, Sun-Hye;Shin, Tae-Joon;Lee, Byung-Hwan;Lee, Jun-Ho;Hwang, Sung-Hee;Pyo, Mi-Kyung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제32권2호
    • /
    • pp.99-106
    • /
    • 2008
  • A ligand - whether an endogenous hormone, neurotransmitter, exogenous toxin or synthetic drug - binds to plasma membrane proteins (e.g., ion channels, receptors or other functional proteins) to exert its physiological or pharmacological effects. Ligands can also have functional groups, showing stereospecificity for interaction sites on their counterpart plasma membrane proteins. Previous reports have shown that the ginsenoside Rg$_3$, a bioactive ginsenoside, meets these criteria in that: 1) an aliphatic side chain of $Rg_3$ plays a role as a functional group, 2) Rg$_3$ regulates voltage- and ligand-gated ion channels in a stereospecific manner with respect to carbon-20, and 3) $Rg_3$ regulates subsets of ligand-gated and voltage-gated ion channels through specific interactions with identified amino acid residues inside the channel pore, in the outer pore entryway, or in toxin binding sites. Rg$_3$, therefore, could be a candidate for a novel ginseng-derived glycosidic ligand regulating ion channels and receptors. This review will examine how Rg$_3$ regulates voltage-gated and ligand-gated ion channels through interactions with its target proteins in the plasma membrane. Hopefully, this review will advance understanding of ginseng pharmacology at the cellular and molecular levels.

입사파와 수평형 유연막의 상호작용 (Interactions of a Horizontal Flexible Membrane with Incident Waves)

  • Cho, Il-Hyoung;Hong, Seok-Won;Kim, Moo-Hyun
    • 한국해안해양공학회지
    • /
    • 제9권4호
    • /
    • pp.182-193
    • /
    • 1997
  • 본 연구에서는 유연성이 있는 막구조 방파제가 파도중 수평으로 놓여 있을 때 유연막에 의한 파랑제어 효과를 살펴보았다. 파도와 유연막의 상호작용을 고려하기 위하여 선형 유탄성 이론을 사용하였다. 계산예로 유연막의 형태, 잠긴깊이 그리고 유연막에 걸리는 초기 장력을 변화시키면서 반사율과 투과율 그리고 유연막의 변형을 살펴보았다. 또한 Texas A&M 대학의 2차원 수조에서 모형실험을 수행하여 해석해와 수치해를 비교하였다. 실험결과는 계산결과를 정성적으로 잘 따라가고 있음을 확인하였다. 개발된 설계 프로그램을 이용하여 설치 해역의 파랑 특성에 적합한 최적의 유연막 방파제를 설계. 제작할 수 있으리라 사료된다

  • PDF

파랑중 수평형 유연막 방파제 성능해석 (The Performance of a Horizontal Flexible Membrane Breakwater in Waves)

  • 조일형;홍석원;김무현
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제1권2호
    • /
    • pp.27-39
    • /
    • 1998
  • 본 연구에서는 수면 밑 일정한 깊이에 잠긴 유연한 천이 파도중 수평으로 놓여 있을 때 유연막과 파도의 상호작용 문제를 살펴보았다. 파도와 유연막의 상호작용을 고려하기 위하여 선형 유탄성 이론을 사용하였다. 계산 예로 유연막의 형태, 잠긴 깊이 그리고 유연막에 걸리는 초기 장력을 변화시키면서 반사율과 투과율 그리고 유연막의 변형을 살펴보았다. 또한 Texas A&M 대학의 2차원 수조에서 모형실험을 수행하여 실험결과와 해석해를 비교하였다. 실험결과와 해석결과는 정성적으로 잘 일치하고 있음을 확인하였다. 개발된 설계 프로그램을 이용하여 설치 해역의 파랑 특성에 적합한 최적의 유연막 방파제를 설계, 제작할 수 있으리라 사료된다.

  • PDF