• 제목/요약/키워드: Membrane bioreactor

검색결과 233건 처리시간 0.022초

Oxygen Transfer Rate Coefficient of Membrane Aeration Bioreactor for Vero Cell Culture

  • 전주미;정연호;김익환;이상종;장용근;전계택
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.269-270
    • /
    • 2002
  • Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for monitoring and control in animal cell culture bioreactor. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture. while avoiding problems of foaming or shear damage generally linked to sparging. For determining the optimum DO control strategy of this gas-permeable membrane aeration bioreactor, the oxygen transfer rate coefficient was measured with varying $N_2$ ratio in inlet air. The results showed that an increasing mass flow rate of nitrogen reduced the $K_La$ value. and 5% nitrogen in air did not result in any oxygen limitation.

  • PDF

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh;Kamsonlian, Suantak;Pal, Shubham
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.532-537
    • /
    • 2022
  • The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • 제21권1호
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

침지형 분리막을 사용한 오수처리

  • 최광호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 제6회 하계 Workshop (98 한국막학회, 국립환경연구원 국제 Workshop, 수자원 보전과 막분리 공정)
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

Advanced Treatment of Wastewater from Food Waste Disposer in Modified Ludzack-Ettinger Type Membrane Bioreactor

  • Lee, Jae-Woo;Jutidamrongphan, Warangkana;Park, Ki-Young;Moon, Se-Heum;Park, Chul
    • Environmental Engineering Research
    • /
    • 제17권2호
    • /
    • pp.59-63
    • /
    • 2012
  • This paper proposes a modified Ludzack-Ettinger (MLE) type membrane bioreactor (MBR) as a method of treatment for wastewater from food waste disposer. Micro-membrane filtration allows for an extremely low concentration of suspended solids in the effluent. The effluent of the reactor in question is characterized by a relatively high level of non-biodegradable organics, containing a substantial amount of soluble microbial products and biomass. Results obtained in this paper by measurement of membrane fouling are consistent with biomass concentration in the reactor, as opposed to chemical oxygen demand (COD). The MLE process is shown to be effective for the treatment of wastewater with a high COD/N ratio of 20, resulting in are markedly high total nitrogen removal efficiency. Denitrification could be improved at a higher internal recycle ratio. Despite the low concentration of influent phosphorus, the phosphorus concentration of the outflow is seen to be relatively high. This is because outflow phosphorous concentration is related to COD consumption, and the process operates at along solids retention time.

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza;Miri, Taghi;Barati, Abolfazl;Nazemian, Mahboobeh;Sepasi, Mohammad
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.489-499
    • /
    • 2015
  • In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor

  • Palmarin, Matthew J.;Young, Stephanie
    • Membrane and Water Treatment
    • /
    • 제7권1호
    • /
    • pp.11-22
    • /
    • 2016
  • The characterization of treatment performance with respect to mixed liquor suspended solids (MLSS) concentration enables greater control over system performance and contaminant removal efficiency. Hybrid membrane bioreactors (HMBRs) have yet to be well characterized in this regard, particularly in the context of greywater treatment. The aim of this study, therefore, was to determine the optimal MLSS concentration for a decentralized HMBR greywater reclamation system under typical loading conditions. Treatment performance was measured at MLSS concentrations ranging from 1000 to 4000 mg/L. The treated effluent was characterized in terms of biochemical oxygen demand ($BOD_5$), chemical oxygen demand (COD), turbidity, ammonia ($NH_3$), total phosphorus (TP), total kjeldahl nitrogen (TKN), and total nitrogen (TN). An MLSS concentration ranging from 3000 to 4000 mg/L yielded optimal results, with $BOD_5$, COD, turbidity, $NH_3$, TP, TKN, and TN removals reaching 99.2%, 97.8%, 99.8%, 99.9%, 97.9%, 95.1%, and 44.8%, respectively. The corresponding food-to-microorganism ratio during these trials was approximately 0.23 to 0.28. Operation at an MLSS concentration of 1000 mg/L resulted in an irrecoverable loss of floc, and contaminant residuals exceeded typical guideline values for reuse in non-potable water applications. Therefore, it is suggested that operation at or below this threshold be avoided.

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.