• Title/Summary/Keyword: Membrane Separation

Search Result 1,436, Processing Time 0.025 seconds

Activation Effect on Palladium Electroless Plating of Porous Stainless Steel Support (팔라듐 무전해 도금을 위한 활성화 처리에 대한 연구)

  • 허장은;우상국;서동수;한성욱;한인섭;서두원
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.165-170
    • /
    • 1999
  • Palladium membranes have high selectivity of separation and removal of hydrogen to chemical process at high temperature. For the development of hydrogen permeable membrane, palladium was deposited on porous stainless steel support by electroless plating method. In this work, the activation effect on the surface of stainless steel support has been investigated for the effective palladium plating. The morphology and microstructure were characterized by SEM and the composition was analyzed by EDX. It is found that the composition of deposited nuclei on the stainless steel support was changed in accordance with activation cycles. It is also observed that Sn-enriched nuclei has been changed to Pd-enriched nuclei over the fifteenth activation. The uniform deposition of the dense palladium layer on porous stainless steel support has been performing with Sn-enriched nuclei and comparing with Pd-enriched nuclei.

  • PDF

Study on $H_2$ Sensing Characteristics of Gas Extractor for Dissolved Gas in Oil (유중 가스 검출장치의 수소 가스 감지 특성에 관한 연구)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1162-1165
    • /
    • 2004
  • In oil-filled enuipment such as transformers, partial discharge or local overheating will precede a final shutdown. Accompanied with such problems is a decomposition of insulating material into gases, which are dissolved into the transformer oil. The gases dissolved in oil can be separated with some membranes based on the differences in permeability of membranes to different gases. This paper discuss the permeability characteristics of several membranes for separation hydrogen gas in oil. With result of this paper, it may become possible to detect fault-related gases from transformer oil and predict incipient failures in the future.

  • PDF

A Review of Electrochemical Hydrogen Compressor Technology (전기화학적 수소 압축기 기술)

  • KIM, SANG-KYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

Semi-Automatic Hydride Generation and Atomic Absorption Determination of Bismuth with in situ Concentration in a Graphite Furnace

  • Yong-Keun Lee;Dong Soo Lee;Byung Mok Yoon;Hoon Hwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.290-295
    • /
    • 1991
  • A semi-automatic method for the determination of dissolved bismuth at parts per trillion levels is described. The method involves bismuthine generation, in situ collection of bismuthine in a graphite furnace, and atomic absorption detection. In order to facilitate semi-automation of bismuthine generation and separation from aqueous solution, Gore-tex microporous PTEE membrane is used. The absolute detection limit, taken as three times the standard deviation of the instrument noise is 2 pg. The precisions are 3.1% for 100 pg and 1.9% for 1 ng of bismuth, respectively. As many as 90 measurements can be made in an hour.

Recent advances in water and wastewater treatment using membranes with carbon nanotubes

  • Michal, Bodzek;Krystyna, Konieczny;Anna, Kwiecinska-Mydlak
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.259-290
    • /
    • 2022
  • Carbon nanotubes (CNTs), due to their excellent physical, chemical and mechanical properties and their ability to prepare new membranes with attractive properties, have found applications in water and wastewater technology. CNT functionalization, which involves the introduction of different types of functional groups into pure CNTs, improves the capabilities of CNT membranes for water and wastewater treatment. It turns out that CNT-based membranes have many advantages, including enhanced water permeability, high selectivity and anti-fouling properties. However, their full-scale application is still limited by their high cost. With their tremendous separation efficiency, low biofouling potential and ultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment in the future, especially in desalination.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF

A Study of the Effect of the Permeability and Selectivity on the Performance of Membrane System Design (분리막 투과도와 분리도 인자의 시스템 설계 효과 연구)

  • Shin, Mi-Soo;Jang, Dongsoon;Lee, Yongguk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.656-661
    • /
    • 2016
  • Manufacturing membrane materials with high selectivity and permeability is quite desirable but practically not possible, since the permeability and selectivity are usually inversely proportional. From the viewpoint of reducing the cost of $CO_2$ capture, module performance is even more important than the performance of membrane materials itself, which is affected by the permeance of the membrane (P, stagecut) and selectivity (S). As a typical example, when the mixture with a composition of 13% $CO_2$ and 87% of $N_2$ is fed into the module with 10% stage cut and selectivity 5, in the 10 parts of the permeate, $CO_2$ represents 4.28 parts and $N_2$ represents 5.72 parts. In this case, the $CO_2$ concentration in the permeate is 42.8% and the recovery rate of $CO_2$ in this first separation appears as 4.28/13 = 32.9%. When permeance and selectivity are doubled, however, from 10% to 20% and from 5 to 10, respectively, the $CO_2$ concentration in the permeant becomes 64.5% and the recovery rate is 12.9/13 = 99.2%. Since in this case, most of the $CO_2$ is separated, this may be the ideal condition. For a given feed concentration, the $CO_2$ concentration in the separated gas decreases if permeance is larger than the threshold value for complete recovery at a given selectivity. Conversely, for a given permeance, increasing the selectivity over the threshold value does not improve the process further. For a given initial feed gas concentration, if permeance or selectivity is larger than that required for the complete separation of $CO_2$, the process becomes less efficient. From all these considerations, we can see that there exists an optimum design for a given set of conditions.

Gas Separation Properties of Polyaniline/Polyimide Blend Membranes (Polyaniline/Polyimide 혼합막의 기체 분리 특성)

  • Lee, Ki-Seob;Kim, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.483-489
    • /
    • 2007
  • Polyaniline (PANI)/Polyimide (PI) membranes were prepared and the effects of PANI contents and doping on the structural properties and gas separation properties were studied. The polyamic acid (PAA) solution was prepared by the polycondensation reaction of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 4,4'-oxydianiline (ODA) in 1-methyl-2-pyrrolydinone (NMP) solvent. The PANI/PI blends were obtained by mixing PAA solution and PANI solution, and were doped with 1 M aqueous HCl solution for 24 h. The structural characterizations of the as-cast and doped membranes were examined by FT-IR, XRD, and TGA. The gas permeation experiments with $H_2$, $CO_2$, $O_2$, $N_2$, and $CH_4$ were carried out by variable pressure method at $30^{\circ}C$ and 5 atm. For all gases tested, the permeability coefficients of the blends decreased with increasing PANI content and the magnitude of permeability was in the order of $H_2$ > $CO_2$ > $O_2$ > $N_2$ > $CH_4$. The permeability for PANI/PI membranes decreased after the doping process while the permselectivity increased. For $H_2/CH_4$ separation, the doped PANI/PI (75/25) membrane has a permselectivity of 991.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

Separation of Hydrogen-Nitrogen Gases by PDMS-SiO2·B2O3 Composite Membranes (PDMS-SiO2·B2O3 복합막에 의한 수소-질소 기체 분리)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • $SiO_2{\cdot}B_2O_3$ was prepared by trimethylborate (TMB)/tetraethylorthosilicate (TEOS) mole ratio 0.01 at $800^{\circ}C$. PDMS[poly(dimethysiloxane)]-$SiO_2{\cdot}B_2O_3$ composite membranes were prepared by adding porous $SiO_2{\cdot}B_2O_3$ to PDMS. To investigate the characteristics of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane, we observed PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane using TG-DTA, FT-IR, BET, X-ray, and SEM. PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was studied on the permeabilities of $H_2$ and $N_2$ and the selectivity ($H_2/N_2$). Following the results of TG-DTA, BET, X-ray, FT-IR, $SiO_2{\cdot}B_2O_3$ was the amorphous porous $SiO_2{\cdot}B_2O_3$ with $247.6868m^2/g$ surface area and $37.7821{\AA}$ the mean of pore diameter. According to the TGA measurements, the thermal stability of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was enhanced by inserting $SiO_2{\cdot}B_2O_3$. SEM observation showed that the size of dispersed $SiO_2{\cdot}B_2O_3$ in the PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was about $1{\mu}m$. The increasing of $SiO_2{\cdot}B_2O_3$ content in PDMS leaded the following results in the gas permeation experiment: the permeability of both $H_2$ and $N_2$ was increased, and the permeability of $H_2$ was higher than $N_2$, but the selectivity($H_2/N_2$) was decreased.