• Title/Summary/Keyword: Membrane Separation

Search Result 1,432, Processing Time 0.025 seconds

Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane (중공사막을 이용하는 다성분 혼합물 분리공정의 모델링)

  • Kim, Sin-Ah;Kim, Jin-Kuk;Lee, Young Moo;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

Treatment and Reuse of Acrylic Wastewater using Membrane Separation System

  • Lee, Kwanghyun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.117-120
    • /
    • 2004
  • The separation characteristics were investigated with the variations of pressure and temperature using ultrafiltration and reverse osmosis membrane module sets composed of different membrane types and materials. TDS, T-N and COD removal efficiencies were not affected and low with the change of temperature and pressure in case of using UF modules contained in module set 1, 2, 3. TDS, T-N and COD removal efficiencies were very high in RO modules. The final water quality of acrylic wastewater was satisfied within the discharge limit value of plant wastewater. It was known that membrane module sets could be used for the reuse of wastewater.

  • PDF

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Pervaporation Separation of Water from Aqueous TFEA Solution by NaY Zeolite Membrane

  • Jeon, Hyun-Soo;Ahn, Hyo-Seong;Lee, Young-Jin;Song, In-Ho;Lee, Hyer-Yeon;Lee, Yong-Taek;Park, In-Jun;Lee, Soo-Bok
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • Pervaporation of water/2,2,2-trifluoroethanol (TFEA) mixtures was performed using a NaY zeolite membrane which was prepared by a hydrothermal synthesis. Pervaporation with a zeolite membrane is one of the economic separation technologies for liquid mixtures including organic/water solutions. The effects of a TFEA feed concentration and a temperature were studied on the permeation flux and the separation factor. Not only the water flux increased significantly with the increase of the operating temperature, but also the TFEA flux through the NaY zeolite membrane rapidly increased with the increase of the temperature at the feed concentration below 0.8 mole fraction of TFEA.

On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation (이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동)

  • 전명석;김영목;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

Simulation of Separation Properties of Propylene/propane in Silver Nanoparticle Containing Facilitated Transport Membrane (전산모사 프로그램을 이용한 은나노함유 촉진수송막의 프로필렌/프로판 분리특성 예측)

  • Park, Chae Young;Han, Sang Hoon;Kim, Jeong Hoon;Lee, Yongtaek
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.409-415
    • /
    • 2014
  • This study is aimed to separate propylene and propane using membrane process instead of NCC(Naphtha Cracking Center) $C_3$ splitter. Membrane process is a low energy consumption and eco-friendly process while $C_3$ splitter requires high energy consumption in petrochemical processes. In this study, high performance facilitated transport membrane (FTM) is used for propylene/propane separation. FTM module was prepared on top of porous polyetherimide hollow fiber using PVP/$AgBF_4$/TCNQ. We developed simulation program predicting the membrane separation properties under operation conditions. Separation properties of FTM module for propylene and propane were obtained from the simulation program based on the pure gas permeation data. Based on these results, it is predicted that an one-stage membrane process provides 99.5% of propylene at permeate side from a binary gas mixture of 95/5 vol% $C_3H_6$ / vol% $C_3H_8$ supplied as a feed gas.

Absorptive Separation of Sulfur Dioxide using Flat Membrane Contactor (평판형 분리막 접촉기를 이용한 이산화황 흡수 분리)

  • Lee Yong-Taek;Lee Young-Jin;Song In-Ho;Jeon Hyun-Soo;Ahn Hyo-Seong;Lee Hyung-Keun
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.196-203
    • /
    • 2006
  • A flue gas emission known to cause an acid rain, containing sulfur dioxide, is tightly controlled by a regulation. The membrane contactor could be one of the alternatives which might be useful technologies for better performance of desulfurization. The fundamental sulfur dioxide separation data were obtained by a flat membrane contactor so that they could be utilized for the full scale membrane contactor. The separation of sulfur dioxide was measured in terms of the concentration of NaOH absorbent, the concentration of sulfur dioxide, the feed flow rate and different membrane materials. As the concentration of absorbent increased, the removal efficiency increased. By increasing the concentration of sulfur dioxide, the removal efficiency decreased. As the feed flow rate increased, it was observed that the removal efficiency decreased. Finally, the effect of the membrane material on separation was found to be negligible.

Separation of $H_2$/$N_2$ Gas Mixture by PTMSP-PEI and PDMS-PEI Composite Membranes (PTMSP-PEI와 PDMS-PEI 복합막에 의한 수소/질소 혼합기체 분리)

  • 강태범;조성혜;이현경
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.291-299
    • /
    • 2003
  • Polymer membranes such as poly(1-trimethylsilyl-1-propyne)-polyetherimide (PTMSP-PEI) and poly(dimethylsiloxane)- polyetherimide (PDMS-PEI) composite membrane were prepared by solution casting method. To investigate the characteristics of these membranes, the analytical methods such as FT-IR, $^1H-NMR,$ DSC, TGA, GPC, and SEM have been utilized. The number-average (equation omitted) and weight-average (equation omitted) molecular weight of PTMSP were 477,920 and 673,329 respectively. The glass transition temperature ($T_g$) of PTMSP was $224^{\circ}C.$ The separation of the gas mixture ($H_2/N_2$) through the composite membranes were studied as a function of pressure. The separation factor (${\alpha}, {\beta},$ quation omitted) of the composite membranes used in this work increased as the pressure of permeation cell increased. The real separation factor (${\alpha}$), head separation factor (${\beta}$), and tail separation factor (equation omitted) of PTMSP-PEI composite membrane were 2.28, 1.17, and 1.96 respectively at ${\Delta}P$ 30psi and $25^{\circ}C.$ (${\alpha}, {\beta}$ and equation omitted of PDMS-PEI composite membrane were 3.70, 1.53, and 2.42 respectively at ${\Delta}P$ 30psi and $25^{\circ}C$.