• Title/Summary/Keyword: Membrane Protein

Search Result 1,795, Processing Time 0.114 seconds

Active role of oxygen on penicillin sensitivity and fromation of membrane protein in escherichia coli K12 (Escherichia coli K12의 막단백질 형성과 페니실린 민감성에 대한 산소의 능동적 역할)

  • 박현근;한홍의
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.263-269
    • /
    • 1986
  • Membrane proteins of facultatively anaerobic Escherichia coli K12 which was logarithmically grown in aerobiosis and anaerobiosis were compared on 5 to 10% liner gradient gel electrophoresis (Na Dod $SO_4 -PAGE$). Membrane proteins were formed as different patterns between aerobiosis and anaerobiosis. Among them, 91Kdal protein (pbp1a) was not synthesized in aerobiosis and 60Kdal protein (fts cluster), in anaerobiosis. Thereby cells cultured aerobically were differenciated as diversiform cell shape, comparing cells cultured anaerobically and the latter were resistant to penicillin G. Thus it is believed that in facultative anaerobes atmospheric oxygen regulated the synthesis of membrane proteins and even the expression of equivalent genes, and moreover alleviated the resistance to an antibiotic penicillin.

  • PDF

Automated Protein-Expression Profiling System using Crude Protein Direct Blotting Method

  • Kobayashi, Hironori;Torikoshi, Yasuhiro;Kawasaki, Yuko;Ishihara, Hideki;Mizumoto, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2356-2361
    • /
    • 2003
  • Proteome research in the medical field is expected to accelerate the understanding of disease mechanism, and to create new diagnostic concept. For protein profiling, this paper proposes a new methodology named CPDIB (Crude Protein Direct Blotting). In the CPDIB procedure, crude protein sample is directly immobilized on a membrane and the expression of protein molecules in the sample are analyzed quantitatively by using a special device called ImmobiChip, where the membrane is used as a field of the immune reaction. The over-all structure of the ImmobiChip is based on the conventional Slot blot device. Mechanical improvement in the air-tightness of the case holding the membrane realizes the direct blotting and results in high performance of stability in the immune reaction. In the measurement of multiple proteins, a dispensing robot is used for increasing the efficiency of handling of liquid. Cooperation of the dispensing robot with the ImmobiChip for immobilizing proteins realizes automated and stable performance of the CPDIB procedure. This paper shows the evaluation of the air-tightness of the ImmobiChip, the ability of analyzing proteins using the CPDIB procedure and the performance of the automated equipment.

  • PDF

Kinetics of Organic ion Transport Across Rabbit Renal Brush Border and Basolateral Membrane Vesicles (가토 신피질 Brush Border Membrane과 Basolateral Membrane Vesicle에서 유기이온의 이동에 대한 동력학적 분석)

  • Kim, Yong-Keun;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.273-282
    • /
    • 1987
  • 가토 신피질에서 분리한 brush border membrane (BBM)과 basolateral membrane vesicle (BLM)에서 유기 음이온인 p-aminohippuric acid (PAH)와 유기 양이온인 tetraethylammonium (TEA)의 이동에 대한 동력학적 분석을 하였다. BLM에서 PAH에 대한 Km과 Vmax값은 각각 $0.34{\pm}0.02\;mM$$0.22{\pm}0.07\;nmol/mg\;protein/20s$였으며 BBM에서 각 값은 $8.46{\pm}0.57\;mM$$4.43{\pm}0.40\;nmol/mg\;protein/20s$였다. BLM에서 용액내 Na의 제거는 PAH에 대한 Km 값에는 영향없이 Vmax 값을 변화시켰다. BBM에서 TEA이동에 대한 Km과 Vmax 값은 각각 $0.55{\pm}0.15\;mM$$1.04{\pm}0.23\;nmol/mg\;protein/20s$였으며 BLM에서 각 값은 $0.46{\pm}0.04\;mM$$0.61{\pm}0.06\;nmol/mg\;protein/20s$였다. BLM에서 측정한 유기 이온들의 이동에 대한 Km 값이 신절편이나 분리된 tubule에서 보고된 값과 일치함을 보였으며 이러한 결과는 신세뇨관 세포막을 통한 유기 이온들의 이동 특성이 membrane vesicle을 분리하는 과정에서 변하지 않았음을 가르킨다.

  • PDF

Isolation of a Specific Antigen Protein on Cell Membrane of Cochlodinium polykrikoides, Red Bloom (적조생물 Cochlodinium polykrikoides의 세포표면 특이항원 단백질의 분리)

  • 김광현;한창희;이재훈;김병우;이복규
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.320-324
    • /
    • 2002
  • To establish a rapidly immunochemical identification on a dinoflagellate, Cochlodinium polykrikoides, a specific antigenic protein as a maker on the cell membrane was isolated. The cell membranes of C. polykrikoides and Gymnodinium sangineum were harvested by centrifugation after osmotic shock. The membrane proteins of both cells were solubilized in 50 mM Na-carbonate contained 1 mM DTT, and separated the proteins on SDS-PACE. Immune-blot on the solubilized membrane proteins of the both cells was performed with antiserum against the solubilized membrane proteins of C. polykrikoides. A 120 kDa membrane protein of C. polykrikoides had remarkablely different antigenicity from that of G. sangineum.

BIOASSAY OF HUMNA TOOTH PROTEIN BLOTTED POLYVINYLIDENE DIFLUORIDE(PVDF)MEMBRANE (사람치아 단백질을 분리 흡착한 PVDF막의 생체반응에 관한 연구)

  • Kang, Na-Ra;Hong, Jong-Rak;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.3
    • /
    • pp.186-192
    • /
    • 2004
  • Purpose: Human tooth proteins are highly heterogeneous, comprising diverse proteins derived from a number of genes. The attempts to identify protein for activity of tooth matrix proteins have been defied by several factors. First, the amount of proteins within teeth is very small relative to many extracellular matrix proteins of other tissues. Second, the bioassay system is tedious and needed for long time. Therefore we tried to find easy techniques, which increase the product rate, and an assay of small proteins, with which amino acid sequence is possible without additional procedures. Materials and Methods: Total protein were extracted from 300 g enamel removed teeth and 600 g teeth with 4 mol/L guanidine HCl and purified by gel chromatography. Aliquot of proteins was implanted into muscle pouches in Sprague-Dawley rats for bioassay. By SDS-PAGE and membrane blotting, molecular weight of each protein was estimated and a partial amino acid sequence was obtained. Each fraction blotted on the membrane was cut out and inserted in rat ectopic model. Results: In dissociative method, total tooth proteins were obtained 1mg/ml from enamel removed teeth and 3.5 mg/ml from teeth. In SDS-PAGE, four clear bands at the sites corresponding to 66, 40, 20 and 18 kD. Especially The 66 kD band was clearly exhibited. Amino acid sequencing from tooth could be possible using PVDF membrane blotting technique. In amino acid sequencing, 66 kD protein was identified as albumin. Conclusion: Compared with conventional method for extraction of teeth protein and bioassay of proteins, the methods in this study were easy, time-saving and more productive technique. The matured tooth proteins omitting additional procedure of mechanical removal of enamel were simply analyzed using blotted PVDF membrane. This method seems to make a contribution as a technique for bioassay and amino acid sequencing of protein.

Effects of Spermine on Changes in Chlorophyll-Protein Complexes and Plastic Membrane Proteins of Mung Bean Cotyledons during Greening (녹화중인 녹두 자엽의 엽록소-단백질 복합체 및 색소체막 단백질의 변화에 미치는 Spermine의 효과)

  • 홍정희;박흥덕
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 1995
  • Developmental changes of chlorophyll-protein complexes (CPs) and plastid membrane proteins in greening mung bean cotyledons and the effect of spermine therein were examined by SDS-polyacrylamide gel electrophoresis. The changes in the amounts of CPs became larger with the progress of greening and light-harvesting chlorophyll a/b protein (LHCP) was the main CP in the early greening stage up to f h. As the greening proceeded, chlorophyll-protein of the photosystem I (CPI) accumulated. Application of spermine were effective in accumulating CPs of the thylakoid membrane in the early phase of greening. In the profiles of the plastid membrane proteins, quantitative and qualitative changes were observed with the onset of greening up to 72 h. 56 kD protein of major intensity was observed in all greened chloroplasts and 24 kD protein increased remarkablly in both control and spermine-treated cotyledons. The thylakoids from spermine-treated cotyledons showed hither amounts of thylakoid proteins as compared to the controls. The results suggest that spermine may play a role in the regulation of plastid development and stabilizes the membrane function during greening.

  • PDF

Effects of Spermine on Changes in Chlorophyll-Protein Complexes and Plastic Membrane Proteins of Mung Bean Cotyledons during Greening (녹화중인 녹두 자엽의 엽록소-단백질 복합체 및 색소체막 단백질의 변화에 미치는 Spermine의 효과)

  • Hong, Hong,Jung-Hee;Park, Park,Hong-Duck
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.33-33
    • /
    • 1995
  • Developmental changes of chlorophyll-protein complexes (CPs) and plastid membrane proteins in greening mung bean cotyledons and the effect of spermine therein were examined by SDS-polyacrylamide gel electrophoresis. The changes in the amounts of CPs became larger with the progress of greening and light-harvesting chlorophyll a/b protein (LHCP) was the main CP in the early greening stage up to f h. As the greening proceeded, chlorophyll-protein of the photosystem I (CPI) accumulated. Application of spermine were effective in accumulating CPs of the thylakoid membrane in the early phase of greening. In the profiles of the plastid membrane proteins, quantitative and qualitative changes were observed with the onset of greening up to 72 h. 56 kD protein of major intensity was observed in all greened chloroplasts and 24 kD protein increased remarkablly in both control and spermine-treated cotyledons. The thylakoids from spermine-treated cotyledons showed hither amounts of thylakoid proteins as compared to the controls. The results suggest that spermine may play a role in the regulation of plastid development and stabilizes the membrane function during greening.

Solid-state NMR Study on Membrane Protein Structure in Biological Condition

  • Kang, Su-Jin;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2012
  • Membrane proteins play a essential role in the biological systems and it is not easy to handle a membrane protein for its structural study. Solid-state NMR (ssNMR) can be a good tool to investigate the structures and dynamics of membrane proteins. In ssNMR, Magic Angle Spinning (MAS) and Cross Polarization (CP) can be utilized to reduce the line-broadening, leading to high resolution and sensitivity in the spectrum. ssNMR, if combined with other spectroscopic methods, can provide us a enough knowledge on structures and dynamics of membrane proteins in biological condition.

Analysis of Entamoeba histolytica Membrane via LC-MALDI-TOF/TOF

  • Ujang, Jorim Anak;Noordin, Rahmah;Othman, Nurulhasanah
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.84-87
    • /
    • 2019
  • Liquid chromatography mass spectrometry is widely employed in proteomics studies. One of such instruments is the Liquid Chromatography (LC)-Matrix-assisted laser desorption ionisation (MALDI)-Time of flight (TOF) or LC-MALDI-TOF/TOF. In this study, this instrument was used to identify the membrane proteins of a protozoan parasite namely Entamoeba histolytica. It causes amoebiasis in human. The E. histolytica trophozoites were cultured prior to the membrane protein extraction using the conventional method, $ProteoPrep^{(R)}$ and $ProteoExtract^{(R)}$ kits. Then, the membrane protein extracts were trypticdigested and analysed by LC-MALDI-TOF/TOF. Approximately, 194 proteins were identified and 27.8% (54) were predicted as membrane proteins having 1 to 15 transmembrane regions and signal peptides by combining all three extraction methods. Also, this study has discovered 3 unique proteins as compared to our previous study which merit further investigation.

Novel Purification Method of Kv 4.2 Potassium Channel from Rat Brain Membrane

  • Park, Sung-Soo
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Kv 4.2 ion channel protein has an ability to open at subthreshold membrane potentials and to recover quickly from inactivation. That is very important for neuronal signal transmission in vertebrate brain. In order to purify Kv 4.2 protein, the novel purification methods were experimented. The purification procedure utilized chromatography on DE-52 ion exchange column and affinity chromatography on a WGA-Sepharose 4B, and Kv 4.2 affinity column chromatography. It was found that 0.5% (wt./vol.) Triton X-100 detergent in lysis buffer worked well for Kv 4.2 protein solubilization from rat brain membrane. Protein quantitative determination was conducted by BCA method at 562 nm for each purification step to avoid determination interference of protein at 280 nm by detergent. The confirmation of Kv 4.2 existence and amount is performed using by SDS-PAGE/immunoblotting or 96-well dot blotting. The Kv 4.2 without interacting protein that contains carbohydrate, was purified from novel biochemical 3-steps purification method for further research.