• Title/Summary/Keyword: Membrance

Search Result 73, Processing Time 0.021 seconds

Ionic currents elicited by the hypotonic solution in hamster eggs (저장성 용액에 노출된 햄스터 난자에 관찰되는 이온전류의 변화)

  • Choi, Won-yeong;Kim, Yang-mi;Haan, Jae-hee;Huh, Il-oh;Park, Choon-ok;Hong, Seong-geun;Pyu, Pan-dong;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.305-312
    • /
    • 1996
  • Cell volume regulatory mechanisms are usually disclosed by exposure of cell to anisotonic media. If a cell is suddenly exposed to hypotonic media, it swells initially like an osmometer but within minutes regains its original cell volume. This behavior has been labelled as regulatory cell volume decrease(RVD). RVD is believed to result from the loss of permeable ions through the membrane. In this study, we examined hypotonically induced changes in the membrance currents involved in RVD by using whole cell voltage clamp technique in the unfertilized hamster egg. At -40mV of the holding potential, the stationary current was maintained in the hamster egg exposed to isotonic solution composed of, mainly, 115mM NaCl and 40mM mannitol. Hypotonic solution was prepared by removing mannitol. Therefore, the concentrations of $Na^+$ and $Cl^-$ in this hypotonic media were the same as those in the isotonic solution. Following 30 to 60 sec after applying the hypotonic media to the egg, the inward current was evoked. This inward current was eliminated by $100{\mu}M$ 4-acetamido-4'-isothiocyanostil-bene-2,2'-disulfonic acid(SITS), an anion channel blocker, leaving the small outward current component. Further addition of 2mM $Ba^{2+}$, a broad $K^+$ channel blocker, completely abolished the small outward current left even in the presence of SITS during hypotonic stress. These results suggest that $K^+$ and $Cl^-$ move out of cells, resulting in RVD. To test the involvement of $Na^+$ in RVD, 20mM Na-isethionate was substituted for mannitol in isotonic media(135mM $Na^+$) and Na-isethionate (20mM) was freed the hypotonic solution. Only $Cl^-$ concentration in both isotonic and hypotonic media was kept constant at 115mM, whereas concentration of $Na^+$ was lowered in hypotonic solution to 115mM from 135mM in isotonic solution. Hypotonic medium induced the outward current in the egg equilibrated isotonically. This current was reduced by $100{\mu}M$ SITS but was augmented by 2 mM $Ba^{2+}$. In terms of RVD, these results imply that $Cl^-$ efflux is coupled with $K^+$, maybe for electroneutrality during hypotonic stress and/or with $Na^+$ via unknown transport mechanism(s). From the overall results, the hypotonic stress facilitates the movement of $Cl^-$ and $K^+$ out of the hamster egg to regain cellular volume with electroneutrality. If there exist a difference in $[Na^+]_0$ between isotonic and hypotonic solution, another transport mechanism concerned with $Na^+$ may, at least partly, participate in regulatory volume decrease.

  • PDF

Disturbance of $\alpha$-Amylase Secretion from Bacillus amyloliquefaciens Cells by the Treatment of Puromycin and Magnesium (Bacillus amyloliquefaciens에서 Puromycin 과 Magnesium에 의한 $\alpha$-Amylase 의 분비저해)

  • 안순자;김순옥;이동희;송방호
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.412-420
    • /
    • 1989
  • To know how the ribosomes involved in secretory protein synthesis were attached to the cytoplasmic membrane in Bacillus amyloliquefaciens, the cells were treated with puromycin combinated with magnesium at the logarithmic phase, and the variation of cell-bound and extracellular $\alpha$-amylase activity was assayed for determining the $\alpha$-amylase translocation blocking through the cytoplasmic membrane. In the abnormal $\alpha$-amylase producing mutant in which the C-terminal of the $\alpha$-amylase structure was deleted, B. umytotiquefaciens CH10-2, the $\alpha$-amylase was translocated normally through the cytoplasmic membranes, and the translocation blocking by puromycin was revealed to have a similar pattern as that in the wild type. This means that the C-terminal part of the enzyme structure may not have a signal for secretion. The cell death of the logarithmic phase cells in both strains was not affected much under 20$\mu\textrm{g}$/$m\ell$ of puromycin, however, the $\alpha$-amylase translocation was blocked markedly under less than 10$\mu\textrm{g}$/$m\ell$ of the puromycin concentration. The blocking of the enzyme secretion by puromycin may be due to the detachment of the ribosomes from cytoplasmic membranes by disturbing the nascent polypeptide synthesis. Further evidence for confirming this was that the detachment was increased in 50 mM of magnesium ion because the extracellular $\alpha$-amylase activity was decreased more under this condition. If the cells were treated with trypsin combinated with Iysozyme, the extracellular $\alpha$-amylase activity from the cultured medium was reduced markedly, however, the activity from the cells treated with trypsin only was not reduced. This means that the nascent polypeptides protruding from the cytoplasmic membrane were sensitive to the trypsin digestion, whereas the matured ones were not. Therefore, the protruding polypeptides from the cytoplasmic membranes may be truncated by trypsin before forming their final tertiary structures by folding in the cell wall layer.

  • PDF

Effect of Types of Egg Shell Calcium Salts and Egg Shell Membrane on Calcium Metabolism in Rats (난각 칼슘염의 종류와 난막의 존재유무가 흰쥐의 칼슘대사에 미치는 영향)

  • Noh, Kyung-Hee;Lee, Sang-Hyun;Ma, Jie;Zhou, Yusi;Kim, Jae-Cherl;Kim, Myo-Jeong;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.853-859
    • /
    • 2006
  • This study was carried out to investigate the effect of egg shell calcium salt types and egg shell membrane on calcium metabolism in rats. Sprague-Dawley male rats, 4 weeks of age, were fed on free-calcium diets for 2 weeks after adjustment period. Rats weighing approximately $247{\pm}2.3g$ were divided into 6 groups and were fed on the experimental diets containing 0.2% calcium for 4 weeks. Experimental groups were as follows; {ES(M+)} (egg shell powder diet with egg shell membrane), {ES(M-)} (egg shell powder diet without egg shell membrane), {AC(M+)} (egg shell calcium acetate diet with egg shell membrance), {AC(M-)} (egg shell calcium acetate diet without eg shell membrane), {GC(M+)} (egg shell calcium glucuronate diet with egg shell membrane) and {GC(M-)} (egg shell calcium glucuronate diet without egg shell membrane). Bone length of femur was significantly different by the types (p<0.05) of egg shell calcium salts. Bone mineral density of femur showed the highest level in AC(M-) group. Calcium content of femur and calcium absorption rate were higher in egg shell calcium salt groups than in eg shell powder groups. Calcium absorption rate and retention were significantly different (p<0.05) among the types of eg shell calcium salts and were higher in the AC(M-) group than in the other groups. Alkaline phosphatase activity, parathyroid hormone and osteocalcin levels of serum showed no significant difference among the experimental groups. From the above results, it is concluded that bioavailability of calcium is higher in groups of egg shell calcium salts compared to those in egg shell powder, even though egg shell membrane has no effect on calcium metabolism. Thus, these findings suggest the possibility of using egg shell calcium salts as a functional food material related to calcium metabolism.