• Title/Summary/Keyword: Membership Value

Search Result 220, Processing Time 0.02 seconds

Noise Removal Algorithm based on Fuzzy Membership Function in AWGN Environments (AWGN 환경에서 퍼지 멤버십 함수에 기반한 잡음 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1625-1631
    • /
    • 2020
  • With the development of IoT technology, various digital equipment is being spread, and accordingly, the importance of data processing is increasing. The importance of data processing is increasing as it greatly affects the reliability of equipment, and various studies are being conducted. In this paper, we propose an algorithm to remove AWGN according to the characteristics of the fuzzy membership function. The proposed algorithm calculates the estimated value according to the correlation between the value of the fuzzy membership function between the input image and the pixel value inside the filtering mask, and obtains the final output by adding or subtracting the output of the spatial weight filter. In order to evaluate the proposed algorithm, it was simulated with existing AWGN removal algorithms, and analyzed using difference image and PSNR comparison. The proposed algorithm minimizes the effect of noise, preserves the important characteristics of the image, and shows the performance of efficiently removing noise.

Development of Fuzzy Membership Function for Emotional Satisfaction Quantification (감성 만족도의 정량화를 위한 퍼지 소속 함수 개발)

  • Park, Jun-Seok;Myeong, No-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.37-54
    • /
    • 2004
  • Fuzzy theory provides an intelligence treatment model for judgement about information when it needs a solution or a decision making about vague problems. Therefore, fuzzy theory is used for appropriate evaluation and decision on obscure information as human's emotion in human factors, In previous study, fuzzy membership function is defined for judgement infOlmation as human's emotion then ultimate results are deducted through fuzzy inference model. This method uses general CWTent through literature review or max, min and average as representative statics value about considering variables. But, this method makes away with nonlinear's or inegular's factors of human sensibility. Accordingly, application of this method leads to considerable loss of information in the ultimate evaluation. For that reason, this method has a limitation in objective evaluation of human factors. So, this study focuses on development of fuzzy membership function, which evaluates human's emotion or feeling accurately and objectively. We used the regression analysis and reasoned a fuzzy membership function about the relation of the variables. Then we verified the adequacy with the reliability through the experiment after this.

Fuzzy Stretching Method of Color Image (컬러 영상에서의 퍼지 스트레칭 기법)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.19-23
    • /
    • 2013
  • TIn this paper, we propose a novel fuzzy stretching method that adopts a triangle type fuzzy membership function to control the highest and lowest brightness limit dynamically. As an essential procedure to enhance the brightness contrast, stretching is an important procedure in color image processing. While popular Ends-in Search stretching method should be provided fixed minimum and maximum brightness threshold from experience, our proposed method determines them dynamically by fuzzy membership functions. The minimum and maximum limit is determined by computing the lowest and highest pixel value according to the membership degree of our designed triangle type membership function. The experiment shows that the proposed method result in far less skewed histogram than those of Ends-in Search stretching thus successfully verifies its effectiveness.

Suggestion of developing a subscription on e-commerce platform: Case study of Amazon, Alibaba, Rakuten (쇼핑 플랫폼의 유료 멤버십 개발을 위한 제언: Amazon, Alibaba, Rakuten 멤버십 벤치마킹 사례 연구)

  • Nam, Jiyeon;Rha, Jong-Youn
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.99-109
    • /
    • 2020
  • Paid membership is a useful marketing method that can acquire long-term customers. This study benchmarked representative overseas memberships, Amazon Prime, Alibaba 88 Membership, and Rakuten Super Point, so that domestic shopping platform companies can refer to launch the paid membership. The membership services have in common: economic benefits, convenient experiences, and discriminatory treatment. Domestic companies should set the core customer value they want to deliver to consumers and organize the benefits so that paid membership can be operated from a long-term perspective. This study has a high practical contribution and it is necessary to conduct an empirical analysis of experts and a customer user survey in the future.

문자 인식에서의 Fuzzy Membership Function

  • Yang, Sun-Seong;Nam, Gi-Dong;Kim, Yeong-Jong;Lee, Gyun-Ha
    • Annual Conference on Human and Language Technology
    • /
    • 1990.11a
    • /
    • pp.191-198
    • /
    • 1990
  • 본 논문에서는 문서 자동 인식 시스템에서 다중 카테고리로 모호하게 인식되어 질 수 있는 조합 심볼을 하나의 메타 심볼로 간주하고, 이 심볼을 fuzzy set theory에 기초를 두어 분석을 하였다. 분석 과정에서는 메타 심볼이 갖는 프리미티브들의 기울기와 길이, 프리미티브들간의 연결 및 프리미티브의 위치등의 어트리뷰트들을 이용하였다. 모호성을 내재하고 있는 메타 심볼들을 ACS(Ambiguous Category Set)의 원소로 간주하였으며, ACS의 원소들은 모호성의 원인을 제공하는 부분패턴들을 공동으로 포함하고 있다. 부분패턴을 구성하고 있는 프리미티브를 분리하여 어트리뷰트 값을 측정하고, 정의한 MF(Membership 함수)의 파라메터로 사용하였다. MF에서 얻어진 MFV(Membership Function Value)는 모호한 메타 심볼이 어떤 카테고리로 분류될 수 있는지를 나타내도록 하였다.

  • PDF

Function Approximation for Reinforcement Learning using Fuzzy Clustering (퍼지 클러스터링을 이용한 강화학습의 함수근사)

  • Lee, Young-Ah;Jung, Kyoung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.587-592
    • /
    • 2003
  • Many real world control problems have continuous states and actions. When the state space is continuous, the reinforcement learning problems involve very large state space and suffer from memory and time for learning all individual state-action values. These problems need function approximators that reason action about new state from previously experienced states. We introduce Fuzzy Q-Map that is a function approximators for 1 - step Q-learning and is based on fuzzy clustering. Fuzzy Q-Map groups similar states and chooses an action and refers Q value according to membership degree. The centroid and Q value of winner cluster is updated using membership degree and TD(Temporal Difference) error. We applied Fuzzy Q-Map to the mountain car problem and acquired accelerated learning speed.

The Roles of Study Habits and Emotional-behavioral Problems in Predicting School Adjustment Classification Among 3rdGraders (초등학교 3학년 아동의 학교적응 유형을 예측하는 학습습관과 정서행동문제의 역할)

  • Sung, Miyoung;Chang, Young Eun;Seo, Byungtae
    • Korean Journal of Childcare and Education
    • /
    • v.12 no.6
    • /
    • pp.79-102
    • /
    • 2016
  • The purpose of this study was to identify school adjustment groups by applying a Latent Profile Analysis(LPA) and to investigate the effects of children's emotional problems and study habits on determining the membership of these groups. LPA and multiple logistic regression were conducted using the data of 2,200 third-graders from the Korean Children and Youth Panel Study. The results are listed as follows. First, four school adjustment groups were identified: adjustment, approach to adjustment, maladjustment risk, and maladjustment group. Second, accomplishment value and mastery goal orientation were relatively strong predictors of membership of the school adjustment groups. Time management was also a significant variable that predicted the membership of maladjustment or the maladjustment-risk group. Third, attention problems and depression were the most consistent predictors of membership of maladjustment or the maladjustment-risk group. Physical symptoms and social withdrawal were also significant. Based on the results, implications for intervention to promote early school adjustment were discussed.

Development and Analysis of Fuzzy Overall Equipment Effectiveness (OEE) in TPM (TPM에서 퍼지 OEE 모형의 개발 및 분석)

  • Choi, Sungwoon
    • Journal of the Korea Management Engineers Society
    • /
    • v.23 no.4
    • /
    • pp.87-103
    • /
    • 2018
  • This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF